¿Cómo se han diseñado los arcos a lo largo de la historia?

Pequeño puente de fábrica sobre el río de Pola de Somiedo (Asturias). Fotografía V. Yepes.
Pequeño puente de fábrica sobre el río de Pola de Somiedo (Asturias). Imagen: © V. Yepes, 2010

Seguimos con este artículo un repaso histórico de los arcos. Como en su día se dijo, este es un “invento diabólico” que revolucionó en su momento el arte de construir. Vamos, pues a seguir con esta labor divulgadora, a sabiendas que nos dejamos muchas cosas por el camino.

Desde la Roma clásica al Renacimiento, los arcos y los estribos se diseñaban con reglas de buena práctica y con criterios geométricos. Los constructores, desconocedores de las nociones de las fuerzas y sus líneas de acción, tuvieron que utilizar reglas en forma de proporciones o bien hacer modelos. Estos criterios empíricos no deberían ser tan absurdos pues, como indica Huerta (1996), la prueba es que muchas estructuras construidas en la época “pre-científica” -donde se incluyen todas las catedrales góticas-, fueron concebidas de esta forma.

Los secretos del oficio, guardados celosamente por los gremios y transmitidos oralmente, en un lenguaje hermético y oscurantista, empiezan a difundirse con los tratados de Arquitectura a partir del Renacimiento. Diego de Sagredo, Alberti o Palladio encabezan un listado de tratadistas que divulgan el pensamiento arquitectónico renacentista.

Pont Neuf, Toulouse. Imagen: © V. Yepes, 2017

Alberti[1] es el primer autor que establece, en 1452, las reglas para conseguir la estabilidad y constructibilidad de un puente de fábrica. Su tratado de arquitectura, De re aedificatoria, fue un compendio del saber constructivo de su época (Huerta, 2000:514). Sin embargo la edición en latín se publicó en 1485 –antes que la primera edición de Vitruvio[2]– y en España no se tradujo hasta 1582. La intuición mecánica de Alberti le sugiere que la forma del arco es la base para valorar su modo de trabajar: “El arco poco curvo es seguro para su propio peso, pero si se carga conviene componer muy bien su trasdós”, o bien: “El arco muy curvado será en sí mismo débil, cuanto más se carga menos problemas tendrá en su trasdós”. Cuanto más apuntado es un arco, es decir, cuanta mayor sensación visual da de no caer, más resistencia se le confiere.

Palladio[3], en su tratado I Quattro Libri dell’Architettura, de 1570, recoge el dimensionamiento de ejemplos de puentes romanos, dándolos como reglas prácticas.

Leonardo da Vinci[4] fue el primero que intentó estudiar los arcos desde el punto de vista mecánico, como muestran numerosos dibujos del Códice de Madrid, aunque sus análisis desconocían la ley del paralelogramo de fuerzas, fundamental en cualquier estudio estático, que no se resolvió hasta 1586 por Stevenin[5] (Heyman, 1999:92), si bien se formula en su forma actual en 1724 por Varignon[6] en su obra Nouvelle mécanicque.

Arco Leonardo
Códice de Leonardo da Vinci

La primera explicación científica del arco tuvo que esperar a Hooke[7], quien en 1676 apuntó que funcionaba justo al revés que un cable colgado, si bien no halló la ecuación matemática de dicha curva. En 1697 Gregory[8], de forma independiente a Hooke, formula la condición de estabilidad del arco cuando menciona la catenaria como directriz óptima. En 1695, La Hire[9] idealiza las dovelas en bolas de billar y observa que la forma resultante es como si engarzaran en un cable perfectamente elástico y sin peso, definiéndose su forma como antifunicular[10], lo contrario del cuelgue natural. Por tanto, el trazado de un arco ideal pasaría por conocer el estado de carga al que está sometido, donde el peso propio del arco es uno de los componentes principales, lo cual implica un proceso iterativo para establecer la forma definitiva.

Puente la Reina, sobre el río Arga. Camino de Santiago, Navarra. Imagen: © V. Yepes

Couplet, ofreció en 1730 una solución completa al problema, estableciendo el modo de colapso del arco por formación de un mecanismo de cuatro barras; pero fue Coulomb[11] en 1773 quien retomó el problema prácticamente de nuevo, dando una solución sintética a todos los modos de colapso posibles. A finales de la década de 1830, Moseley y Méry desarrollan casi simultáneamente el concepto de línea de empujes, que debe situarse dentro del espesor del arco. En 1833 Navier[12] enuncia la regla del tercio central, por donde debía circular la línea de presiones para evitar las tracciones. Poncelet[13], en 1835, desarrolla un método gráfico que ahorra considerablemente los tiempos de cálculo. Rankine[14] fue el primero en dar una aplicación práctica a la línea de empujes, siendo Barlow y Fuller los encargados de desarrollar la parte gráfica. En 1879 Castigliano[15]abre un nuevo enfoque analítico con planteamientos energéticos, sistematizándose a partir de ese momento el análisis de los arcos de fábrica. Ese mismo año Winkler propuso de forma explícita la aplicación de la teoría elástica para determinar la posición de la línea de empujes.

Sin embargo, el cálculo elástico, a pesar de su racionalidad, plantea sistemas de ecuaciones que son muy sensibles a las pequeñas variaciones en las condiciones de equilibrio (ver Huerta, 2005:78). Los procedimientos desarrollados por Heyman (1966) aplicando la teoría del análisis límite, validando el siguiente supuesto: si existe una configuración de equilibrio, es decir, una línea de empujes contenida dentro del arco, éste no se hundirá. Como consecuencia, la labor del calculista no es buscar el estado de equilibrio real del arco, sino encontrar estados razonables de equilibrio para la estructura estudiada (Heyman, 1967). Este ha sido el enfoque implícito en los diseños geométricos de los maestros de la antigüedad, tal y como indica Huerta (2005:81), justificando la validez de dichos planteamientos. Una recopilación del desarrollo histórico de la teoría del arco de fábrica puede seguirse en Huerta (1999, 2005).
Ejemplo de puente arco de madera. Cangas de Onís (Asturias). Fotografía V. Yepes.
Puente arco de madera. Cangas de Onís (Asturias). Imagen: © V. Yepes, 2010

[1] Leon Battista Alberti (1404-1472), fue arquitecto, matemático, humanista y poeta italiano.

[2] El texto fue descubierto en 1414 por Bracciolini. La edición princeps de la obra vitruviana fue publicada en latín por Giovani Suplicio da Verole en 1486, y en su epístola al cardenal Rafael Riario, se llama a esta obra divinum opus Vitruvi (Blánquez, 2007:XVII). En italiano no se imprimió hasta 1521 y en castellano hasta 1582.

[3] Andrea di Pietro della Góndola, más conocido como Andrea Palladio (1508-1580) fue un reconocido arquitecto italiano del Manierismo, que influyó notablemente en el Neoclasicismo. Una importante aportación a la ingeniería estructural fue la introducción del concepto de cercha o entramado.

[4] Leonardo di ser Piero da Vinci (1452-1519), nacido en Florencia, fue pintor y polímata, genial arquetipo del humanismo renacentista.

[5] Simón Stevenin (1548-1620), fue matemático holandés, ingeniero militar e hidráulico, entre otros oficios.

[6] Pierre Varignon (1654-1722), matemático francés precursor del cálculo infinitesimal, desarrolló la estática de estructuras.

[7] Robert Hooke, científico inglés (1635-1703). Formuló su famosa ley en la que describe cómo un cuerpo elástico se estira de forma proporcional a la fuerza que se ejerce sobre él. En esta época, para reclamar la paternidad de un descubrimiento, los hombres de ciencia enviaban anagramas a sus colegas para, después, cuando las circunstancias eran propicias, les hacían llegar o publicaban el mensaje que los anagramas escondías. Eso fue lo que ocurrió con la descripción que hizo Hooke en 1676 sobre el funcionamiento estructural del arco.

[8] David Gregory (1661-1708), profesor escocés de matemáticas y astronomía en la Universidad de Edimburgo.

[9] Philippe de La Hire, matemático, astrónomo y gnomonicista francés (1640-1719). La obra donde trata el arco es: Traité de mécanique: ou l’on explique tout ce qui est nécessaire dans la pratique des arts, & les propriétés des corps pesants lesquelles ont un plus grand usage dans la physique (1695).

[10] Del latín, funicŭlus, cuerda. Arenas (1996:10) define la antifunicularidad como una afinidad geométrica entre las ordenadas de la directriz de la bóveda y la ley de momentos flectores que produce el sistema de cargas sobre una viga virtual de la misma luz que el arco.

[11] Charles Agustin de Coulomb, físico e ingeniero militar francés (1736-1806), conocido por su famosa ley sobre atracción de cargas eléctricas. Elaboró en el campo estructural la actual teoría de la flexión y una primera teoría de la torsión (1787). También fueron importantes sus ideas sobre la deformación tangencial y el rozamiento.

[12] Claude Louis Marie Henri Navier, ingeniero y físico francés (1785-1836), trabajó en las matemáticas aplicadas a la ingeniería, la elasticidad y la mecánica de fluidos.

[13] Jean Victor Poncelet (1788-1867) fue un matemático e ingeniero francés que recuperó la geometría proyectiva.

[14] William John Macquorn Rankine, ingeniero y físico escocés (1820-1872), conocido también por sus trabajos en termodinámica.

[15] Carlo Alberto Castigliano, ingeniero italiano (1847-1884), elaboró nuevos métodos de análisis para sistemas elásticos.

REFERENCIAS

HEYMAN, J. (1966). The stone skeleton. International Journal of Solids and Structures, 2: 249-279.

HEYMAN, J. (1967). On the shell solutions of masonry domes. International Journal of Solids and Structures, 3: 227-241.

HEYMAN, J. (1999). Teoría, historia y restauración de estructuras de fábrica. CEHOPU, 2ª edición, Madrid.

HUERTA, S. (1996). La teoría del arco de fábrica: desarrollo histórico. Obra Pública, 38:18-29.

HUERTA, S. (2000): Estética y geometría: el proyecto de puentes de fábrica en los siglos XV al XVII, en Graciani, A.; Huerta, S.; Rabasa, E.; Tabales, M. (eds.): Actas del Tercer Congreso Nacional de Historia de la Construcción. Instituto Juan de Herrera/CEHOPU, Sevilla, 513-526.

HUERTA, S. (2005). Mecánica de las bóvedas de fábrica: el enfoque del equilibrio. Informes de la Construcción, 56(496):73-89.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Apuntes sobre la ingeniería en el Renacimiento

Hombre de Vitruvio, dibujo de Leonardo da Vinci, expresión del canon estético renacentista.
Hombre de Vitruvio, dibujo de Leonardo da Vinci.

Resulta difícil resumir en un pequeño post todo lo relacionado con la ingeniería que tuvo lugar en un periodo tan apasionante como el Renacimiento. Tras la “oscura” Edad Media, el renacer del hombre como centro del conocimiento y la vuelta atrás en busca de los clásicos supone un avance de gran trascendencia en todos los órdenes del saber y del conocimiento. Vamos, pues, a realizar una pequeña -y siempre imperfecta- incursión en este periodo, a sabiendas de que nos vamos a dejar muchas cosas por el camino. Dejo, por tanto, algunos enlaces a otras páginas para aquel interesado en ampliar la información.

El Renacimiento (siglos XV y XVI) fue un periodo de reactivación científico y tecnológico. Junto con la posterior Ilustración, supusieron un revulsivo ideológico que tuvo su manifestación en el interés por la técnica y los procedimientos constructivos. Los ingenieros nuevamente fueron miembros de una profesión respetada e incluso algunos de ellos recibieron buena paga. Su ingeniería se diferencia claramente de la medieval, al estar claramente influenciada por los clásicos, y en especial por Vitrubio, cuyos textos fueron descubiertos en 1415 en el monasterio de San Gallo. Igual que en las restantes manifestaciones artísticas o científicas, el renacimiento de la técnica tuvo su origen y alcanzó su más alto nivel en Italia.

Nicolás García Tapia (citado por Sáenz, 1993) señala, entre las principales características de la ingeniería renacentista, las siguientes: se instaura una visión humanística de la técnica; aparece la figura del ingeniero teórico, con creciente separación de la técnica de las ciencias herméticas; los ingenieros mejoran su condición social respecto a los alarifes tradicionales y aumentan su movilidad y sus posibilidades de contratación por diversos países; nace la técnica experimental; se establece una nueva concepción de los sistemas mecánicos y se generalizan las invenciones de toda índole. Un buen resumen de la ingeniería de esta época se encuentra en un reciente número monográfico de la Revista del Ministerio de Fomento sobre “Ingeniería, Cartografía y Navegación en la España del Siglo de Oro” (Varios autores, 2005).

En la España de los Reyes Católicos y tras la Reconquista, la ingeniería estuvo muy cercana a las tropas combatientes. España se dividió administrativamente en regiones y por primera vez aparecen las Comandancias de Ingenieros, dependientes de Artillería, que unifican sistemas y criterios para la ejecución de obras de defensa. Se procedió a realizar una gran labor de restauración de castillos y de construcción de puentes y caminos. En 1474, una cédula de los Reyes Católicos prohíbe la construcción de nuevos castillos en España.

La especialización de numerosos Maestros Mayores de Obras o Alarifes, con fuerte tradición medieval, en obras muy específicas de defensa de ciudades y la progresiva evolución de los sistemas de ataque bélico, propician que se vaya recuperando el término romano de “ingenium” para denominar a las máquinas bélicas, fruto del ingenio de la persona que las concibe. Poco a poco, sobre el año 1540, va apareciendo la denominación de Ingeniero para el especialista en la construcción de fortificaciones, que acompaña a los ejércitos, facilitando los ataques a las ciudades o la defensa de las mismas, y cuyo arte se denomina poliorcética.

En Europa aparecen grandes arquitectos como Leone Battista Alberti. La publicación en 1485 del primer libro de arquitectura indica la inquietud que sentía por la divulgación del conocimiento. En la década de 1550 se hizo también famoso en Ferrara Giovanni Battista Aleotti. Las edificaciones del Renacimiento se caracterizan por construir un conjunto racional, cuyos elementos se hallan dispuestos según rigurosas normas de proporción, donde los elementos formales característicos son la construcción circular coronada por una cúpula y la división armónica de la superficie de los muros, entre otras. En la España de Carlos I se conocen numerosos ingenieros italianos que trabajan a las órdenes del emperador, así en el año 1552, encontramos a Gianbattista Calvi reforzando las fortificaciones de Roses, Barcelona y Tarragona. El mismo Carlos I creó en 1543 la Escuela de Artillería de Milán, para formar profesionales con conocimientos de matemáticas, física y construcción, siendo una de las primeras escuelas cuya vida se dilató a lo largo del siglo XVII.

Boceto de grúa ideada por Leonardo da Vinci
Boceto de grúa ideada por Leonardo da Vinci

Durante los siglos XV y XVI tienen también lugar desarrollos importantes en la dinámica moderna que permiten abandonar los postulados de Aristóteles que se habían estado utilizando prácticamente hasta entonces y que quedaban obsoletos. Florencia tuvo el más famoso ingeniero de todos los tiempos. Pocas veces ha sido bendecido el mundo con un genio como Leonardo da Vinci (1452-1519). Anticipó muchos adelantos del futuro; por nombrar algunos: la máquina de vapor, la ametralladora, cámara oscura, el submarino y el helicóptero. Pero, es probable que tuvieran poca influencia en el pensamiento de la ingeniería de su tiempo. Sus investigaciones eran una mezcolanza no publicada de pensamientos e ilustraciones. Era un investigador impulsivo, y jamás resumía su investigación para beneficio de otros a través de la publicación. En sus cuadernos hacía la anotación de sus investigaciones de derecha a izquierda, posiblemente por comodidad, debido a que era zurdo. Da Vinci fue, probablemente, el primero en describir y utilizar técnicas experimentales que hoy día son empleadas en los laboratorios más avanzados. También se puede decir que fue Leonardo el creador del armamento tal como hoy se concibe. Inventó, entre otras, una máquina para hincar pilotes.

Georgius Agrícola (1.494-1.555) y Galileo Galilei (1564-1642) establecieron las bases científicas de la ingeniería. El primero, en su obra póstuma De Re Metallica (1556) recopiló y organizó de forma sistemática todo el conocimiento existente sobre minería y metalurgia, siendo la principal autoridad en la materia durante cerca de 200 años. Galileo es conocido por sus observaciones astronómicas y por su declaración de que objetos de diferentes masas se ven sometidos a la misma “tasa” de caída. Sin embargo, Galileo fue un magnífico ingeniero, con sus proyectos sobre drenaje al pretender desecar las costas venecianas y dedicarlas al cultivo agrícola, o como ingeniero militar. Su contribución más importante en la construcción fue la “teoría de vigas” que tuvo su origen en el análisis comparativo entre las estructuras de los grandes barcos de madera y la de los botes, aunque sus predicciones fueron erróneas al no considerar la elasticidad de los materiales. Una de sus mayores contribuciones fue la formulación de un método científico, ampliamente aceptado. Uno de los descubrimientos más importantes en la historia de la ingeniería mecánica lo realizó Simón Stevin en Holanda, a fines de la década de 1500. Mediante el “triángulo de fuerzas”, permitió a los ingenieros manejar fuerzas resultantes que actuaban en los miembros estructurales. Stevin escribió un tratado sobre fracciones y también realizó trabajos que llevaron al desarrollo del sistema métrico.

Manuscrito de Galileo Galilei sobre la teoría de vigas.

Se pasa, de los siglos XIV y XV, caracterizados por el desarrollo de la construcción, especialmente de castillos, alcázares, atalayas y torres vigías de defensa de la costa, al siglo XVI, centrado en la construcción de palacios y edificios de gran calidad arquitectónica debido a arquitectos de la talla de Juan de Herrera, constructor de El Escorial, de la fachada de la Catedral de Valladolid, etcétera. Algunos ingenieros de aquella época procedían del extranjero como es el caso de Juan Bautista Antonelli, quien dirigió varias obras de fortificación en España e incluso en ultramar, siendo de destacar, entre otras, los castillos del Morro y de la Punta en La Habana, empezados a construir en 1581. A Antonelli se le debe el enlace fluvial Madrid-Lisboa por el Tajo, Jarama y Manzanares, que permitía, en época de Felipe II, navegar en chalupa desde Madrid hasta Lisboa.

En aquellos tiempos España estaba considerada como el país europeo más avanzado en cuanto a conocimientos de fortificación y empleo de armas de fuego, siendo el primero en conocer las reglas, principios y enseñanzas del Arte del Ingeniero y Artillero que se ensañaba en su Academia de Ciencias de Madrid, ochenta años antes de que hubiese sido creada la Real Sociedad de Londres y la Academia Real de Ciencias de París.

En el siglo XVI fue preciso impulsar la agricultura y crear nuevas zonas de regadío, lo que obligó a la construcción de redes de canales, acueductos y presas. En España se construyó en 1594 el célebre dique de Tibi que durante muchos años, con sus 41 m de altura, fue el más alto de Europa. Los veintiún libros de los ingenios y las máquinas de Juanelo Turriano, escrito en 1568, fue el mejor tratado de construcción del siglo XVI. Era la época de Felipe II, que continúa la política de fortificaciones con los Antonelli, así como con Juan de Herrera y su discípulo Cristóbal de Rojas. Éste último escribió en 1598 la Teórica y Práctica de la Fortificación, que fue el primer tratado de fortificación impreso en España.

En el Renacimiento continúa la preocupación por las cimentaciones. Palladio plantea que los cimientos deberían ser el doble de gruesas que los muros soportados por ellas, una dimensión que podría modificarse según la calidad del suelo y la escala de la edificación. Según Alberti, la excavación de la cimentación debería ser horizontal, para evitar cualquier deslizamiento o movimiento y los muros deberían ubicarse en el centro de la zapata, recomendando abrir algunos pozos o fosos para conocer las características de los estratos presentes bajo la superficie. Existe en este momento una mayor preocupación sobre las cimentaciones y sus técnicas constructivas, si bien no es posible realizar un desarrollo evolutivo del diseño de las cimentaciones, pues fueron tan variadas como los edificios que sustentaban.

Referencias

  • SÁENZ, F. (1993). Los Ingenieros de Caminos. Colección de Ciencias, Humanidades e Ingeniería, nº 47. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid, 305 pp.
  • VARIOS AUTORES (2005). Ingeniería, Cartografía y Navegación en la España del Siglo de Oro. Revista del Ministerio de Fomento, 542. 200 pp.
  • YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.