Construcción sismo-resistente: las claves de los edificios chilenos

1625153¿Por qué los edificios chilenos modernos se comportan tan bien frente a los sismos? La calidad de la tecnología antisísmica empleada en las edificaciones chilenas, que permitió que solo un 1 % sufriera daños estructurales durante el terremoto del año 2010, el sexto más grande del mundo, ha impulsado el interés de varios países de la región por estos dispositivos. En estructuras de hasta 18 pisos se utiliza el aislamiento sísmico, que permiten interrumpir la estructura en su conexión a nivel del suelo y generar una interfaz para que el movimiento sísmico no se propague hacia la estructura. En cambio, en las construcciones de mayor altura se emplea la disipación de energía, que aprovecha el movimiento de la estructura para conectar entre dos puntos un sistema que disipe la energía producto de la deformación relativa de éstos.

Os dejo esta entrevista de televisión al decano de ingeniería de la Universidad Católica de Chile Juan Carlos de la Yera. Es muy ilustrativa e interesante.

También os paso un vídeo explicativo al respecto.

Análisis comparativo de la valoración propuesta por herramientas de evaluación de sostenibilidad en edificación

Estructuras de hormigón de varios edificios en construcción en Zaragoza (España). Wikipedia

RESUMEN: Varios son los sistemas de evaluación de sostenibilidad en edificios de que el proyectista dispone para evaluar la aptitud de su proyecto frente a impactos ambientales. La principal diferencia es la orientación y alcance de los tres tipos de herramientas comparadas. Las herramientas que otorgan certificado al edificio originalmente se orientaban hacia la evaluación de impactos estimados la etapa de ocupación, cuyos impactos serán estimados sobre métricas del diseño en relación a su entorno climático. Posteriormente han incluido entre sus criterios la realización del ACV que valoran sin entrar a cuestionar la posibilidad de reducir impactos iniciales (energía incorporada y emisiones por la construcción). Las exigencias y normativas en cuanto a eficiencia energética han propiciado un mayor conocimiento de éstas además de las actualizaciones Código Técnico de la Edificación al respecto. Por otra parte, las herramientas específicas de ACV para edificación presentan solidez de cuantificación de impactos asociados a la fabricación y construcción, cuyo estudio adquiere mayor relevancia conforme aumentan diseños eficientes energéticamente. Sin embargo la baja familiarización de proyectistas con el proceso de ACV no ha ayudado a difundir su uso. Este análisis subraya las diferencias entre las categorías evaluadas de tres herramientas de evaluación de aplicación en Europa, con el objetivo de hallar qué implicaciones sobre la toma de decisiones del proyectista y en qué grado su criterio como experto se vería influenciado por el peso (puntuaciones) de los criterios y subcriterios. La instrucción española de hormigón estructural EHE-08 provee de un modelo de evaluación de estructuras sostenibles mediante un Indice de Contribución de la Estructura a la Sostenibilidad, cuya utilidad hemos comparado con los sistemas de evaluación genéricos y con los de análisis del ciclo de vida (ACV).

Palabras clave: sistemas evaluación, ponderación criterios, categorías de evaluación, heterogeneidad | assessment system, criteria weighting, assessment categories

Referencia:

MOLINA-MORENO, F.; YEPES, V. (2015). Comparative analysis of the assessment proposed by sustainability assessment tools in Building Constructions. 6th European Conference on Energy Efficiency and Sustainability in Architecture and Planning, Donostia-San Sebastián (Spain), 29 june – 1 july,  pp. 143-148. ISBN: 978-84-9082-174-9

Descargar (PDF, 1.13MB)

 

Mercado de Algeciras, de Eduardo Torroja

Mercado de abastos de Algeciras, de Eduardo Torroja Miret (1899-1961). Wikipedia

El Mercado de Abastos de Algeciras, es un edificio obra del ingeniero Eduardo Torroja Miret y ejecutado por el arquitecto Manuel Sánchez Arcas en 1935 en la Plaza Nuestra Señora de La Palma (Plaza Baja). Fue una estructura muy avanzada para su época, y su cúpula fue la más grande de la historia durante 30 años (1935-1965), hasta que se construyó el Astrodome en Houston (Texas).

El edificio cubre un espacio octogonal cubierto por una lámina esférica sin apoyos internos de 47,60 m de diámetro, 44,10 m de radio de curvatura, 9 cm de espesor en su zona central y 50 en la zona de unión a los pilares, perforada por una claraboya de 10 m de diámetro. La cúpula descansa toda ella sobre 8 pilares periféricos quedando volada en forma de visera en los tramos intermedios para dejar paso a la luz al interior. Se consigue así una estructura limpia y diáfana. Los pilares se encuentran ceñidos por un cinturón con dieciséis redondos de 30 mm, atrevimiento que luego repetiría Torroja en las viseras del Hipódromo de la Zarzuela de Madrid.

El propio Torroja en su libro “Razón y ser de los tipos estructurales” nos explica el funcionamiento de esta estructura: “Los faldones de la bóveda, entre soporte y soporte, vienen escotados por los lunetos que forman las bóvedas cilíndricas rebajadas del contorno, las cuales, a la par que proporcionan con sus marquesinas a las puertas, rigidizan la cúpula y encauzan los haces de isostáticas hacia los soportes.  Al tesar el anillo octogonal que recoge y equilibra los empujes radiales de la cúpula sobre los soportes, mediante los tensores de rosca de que iban provistas sus barras, el casquete esférico quedó equilibrado; e incluso, forzando ligeramente la tensión de aquél, se notó perfectamente cómo toda la parte central de la cúpula se levantaba despegando de su cimbra, lo que permitió desmontar ésta libremente sin ninguno de los cuidados que normalmente requieren estos descimbramientos“.

Os dejo a continuación un vídeo donde D. Rafael López Palanco, Catedrático de Estructuras de la Universidad de Sevilla, realiza una visita técnica al Mercado de Abastos de Algeciras, enmarcado en las proyecciones Visitas de Obra del proyecto I+D+i: Fuentes para la historia de las obras públicas, cofinanciado por la Agencia de Obra Pública de la Junta de Andalucía (AOPA) de la Consejería de Fomento y Vivienda. Espero que os guste.

 

El impacto de las edificaciones en el medio ambiente

Edificios modernos de Lima. Autor: Luis Perales. https://commons.wikimedia.org/wiki/File:Edificios_de_Lima_Peru.jpg

La presión demográfica mundial provoca la necesidad imperiosa de buscar alternativas sostenibles en la construcción de edificios. Efectivamente, para el año 2050 se espera que la población mundial alcance los 8900 millones de personas [1], aunque otros estudios indican que en el año 2030 esta cifra será de 9000 millones [2]. El impacto que supone esta fuerte demanda de viviendas al cambio climático es de una magnitud sin precedentes. Según datos de la UNEP (Programa de las Naciones Unidas para el Medio Ambiente) y de la OCDE (Organización para la Cooperación y el Desarrollo Económicos), el entorno edificado, representa un consumo de energía del 25 al 40%, una carga de residuos sólidos del 30 al 40% y una carga de emisión de gases de efecto invernadero del 30 al 40% [3]. En 2007, el entorno edificado consumió cerca del 47% de la energía total en China [4]. En el año 2004, los edificios agotaron, por sí solos, casi el 37% de toda la energía mundial y se espera que esta cifra alcance el 42% en el año 2030 [5]. En la India, el 24% de la energía primaria y el 30% de la energía eléctrica se consume en los edificios [6]. Casi el 10-20 % de la energía total se consume durante la construcción de los edificios, en función de las cantidades y tipos de materiales empleados, tipología de los edificios , los requisitos funcionales, la demanda de energía eléctrica y la vida útil considerada [6,7]. Algunos estudios indican que un edificio con una vida útil entre 40 y 50 años gasta durante su uso entre el 52 y el 82% de toda la energía consumida durante su ciclo de vida. A todo ello hay que añadir que una parte muy importante de los productos que se incorporan en un edificio no se ejecutan “in situ”, representando un 75% de la energía necesaria para la construcción, pues son materiales con una alta demanda de energía en su fabricación [8,9].

La industria de la construcción, junto con sus industrias auxiliares, es uno de los mayores consumidores de recursos naturales, tanto renovables como no renovables, que está alterando negativamente el medio ambiente. Agota 2/5 partes de los áridos y 1/4 de la madera, y consume el 40 % de la energía total y el 16 % de agua al año [10,11]. El uso de materiales crece constantemente, con más de 23 mil millones de toneladas de hormigón producido anualmente [12,13]. En 2010, de acuerdo con la International Cement Review [14], la producción mundial de cemento se elevó a alrededor de 3,3 millones de toneladas/año , lo que significa un aumento más del 100% en casi 10 años. La producción mundial de cemento llegó a 1,6 mil millones de toneladas/año en 2001 , lo que corresponde a aproximadamente el 7 % de la cantidad mundial de dióxido de carbono liberado a la atmósfera [15,16]. Otros estudios indican que la contribución de la industria cementera a las emisiones de gases de efecto invernadero supera el 5% del total [17]. En Australia, para mantener la demanda en la construcción, se necesitan cada año aproximadamente 30 millones de toneladas de productos, más del 56 % de esta cantidad es hormigón, y el 6%, acero [18].

¿Qué podemos hacer ante este panorama? Evidentemente, es preciso un cambio de actitud a nivel mundial. La construcción y uso de los edificios va a ser creciente, como acabamos de ver. Por tanto, se hace necesaria la optimización de los recursos para que los impactos sean lo menores posibles. A modo de ejemplo, Struble y Godfrey [19] compararon el impacto ambiental producido por una viga de hormigón y otra de acero. Las de hormigón consumen menos energía y contaminan menos los recursos hídricos, sin embargo, presentan un 10% más de emisiones de CO2, aunque requieren un 60% menos de extracción de minerales [20]. Otras posibilidades pasan por la optimización en el diseño de los edificios [21-27]. Nuestro grupo de investigación ha trabajado durante estos últimos años en esta línea [28-35]. Otras líneas de trabajo tienen que ver con la certificación energética de los edificios [36]. En este sentido, La Comisión Europea, con el fin de racionalizar el uso de la energía en los edificios y aumentar su eficiencia energética, propuso la Directiva 2002/91/CE, que fue refundida en la Directiva 2010/31/UE del Parlamento Europeo y del Consejo.

Referencias:

[1] Kates, R.W. (2000). Population and consumption: what we know, what we need to know. Environment: Science and Policy for Sustainable Development, 42(3):10-19.

[2] Fernández-Solís, J. (2007). Analysis of the forces in the exponentialoid growth in construction, in: COBRA 2007, RICS Foundation.

[3] Oteiza, I.; Alonso, C. (2008). Análisis y revisión de herramientas para evaluación de la sostenibilidad de la construcción. Actas de las II Jornadas de Investigación en Construcción, pp. 1149-1166. Madrid.

[4] Wang T H (2005). China: Building a Resource-Efficient Society. China Development Forum 2005. Beijing.

[5] Urge-Vorsatz, D.; Novikova, A. (2006). Opportunities and costs of carbon dioxide mitigation in the worlds domestic sector, in: International Energy Efficiency in Domestic Appliances and Lighting Conference ‘06, London, UK.

[6] Ramesh, T.; , Prakash, R.;  Shukla, K.K. (2013). Life cycle energy analysis of a multifamily residential house: a case study in Indian context, Open Journal of Energy Efficiency 2: 34–41.

[7] Bansal, D. et al. (2010). Embodied energy in residential cost effective units-up to 50 m2, in: International Conference on Sustainable Built environment(ICSBE-2010), Kandy, Sri Lanka 13–14 December.

[8] Ding, G. (2004). The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities, Ph.D. Thesis, University of technology, Sydney, Australia.

[9] Spence, R.;  Mulligan, H. (1995). Sustainable development and the construction industry, Habitat International 19 (3): 279–292.

[10] Lippiatt, B.C. (1999). Selecting cost effective green building products: BEES approach. J Constr Eng Manage 1999;125:448–55.

[11] Chong, W.K.; Kumar, S.; Haas, C.T.; Beheiry, S.M.A.; Coplen, L.; Oey, M. (2009). Understanding and interpreting baseline perceptions of sustainability in construction among civil engineers in the United States. J Manage Eng, 25(3):143–54.

[12] Schokker A.J. (2010). The sustainable concrete guide: strategies and examples. 1 ed. U.S.G.C. Council; 2010. Michigan: U.S. Green Concrete Council.

[13] World Business Council for Sustainable Development (WBCSD) (2006). Cement Industry Energy and CO2 Performance: Getting the Numbers Right; Geneva: World Business Council for Sustainable Development, (WBCSD).

[14] Intercement. Annual Report 2010: how the cement market works. <http://www.intercement.com/RS2010/pt/como-funciona-o-mercado-cimenteiro/>

[15] Mehta, P.K. (2001). Reducing the environmental: concrete can be durable and environmentally friendly. Concr Int:61–66.

[16] Bremner, T.W. (2001). Environmental aspects of concrete: problems and solutions. In: Proceedings of first all-Russian conference on concrete and reinforced concrete, Moscow, Russia.

[17] Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329

[18] Walker-Morison, A.; Grant, T.; McAlister, S. (2007). The environmental impact of building materials. Environment design guide. PRO 7.

[19] Struble, L.; Godfrey, J. (2004). How sustainable is concrete? In: Proceedings of international workshop on sustainable development and concrete technology, Beijing, China: 2004.

[20] Miller, D.; Doh, J.H.; Mulvey, M. (2015). Concrete slab comparison and embodied energy optimisation for alternate design and construction techniques. Construction and Building Materials, 80:329-338

[21] Yeo, D.; Gabbai, R.D. (2011). Sustainable design of reinforced concrete structures through embodied energy optimization. Energy and buildings, 43(8): 2028-2033

[22] Medeiros, G.F.; Kripka, M. (2014). Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59:185-194.

[23] Bansal, D.; Singhc, R.; Sawhney, R.L. (2014). Effect of construction materials on embodied energy and cost of buildings—A case study of residential houses in India up to 60 m2 of plinth area. Energy and Buildings, 69:260-266.

[24] Asif, T. Muneer, R. Kelley, Life cycle assessment: a case study of a dwelling home in Scotland, Building and Environment 42 (2007) 1391–1394.

[25] Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42:1238–1247.

[26] Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16:3730-3743.

[27] Foraboschi, P; Mercanzin, M.; Trabucco,D. (2014). Sustainable structural design of tall buildings based on embodied energy. Energy and Buildings, 68:254-269.

[28] YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, (accepted, in press).

[29] GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)

[30] YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)

[31] GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)

[32] MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)

[33] YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)

[34] PAYÁ-ZAFORTEZA, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Optimization of Reinforced Concrete  Frames by Simulated Annealing. Engineering Structures, 31(7): 1501-1508. ISSN: 0141-0296. (link)

[35] PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)

[36] OWENSBY-CONTE, D.; YEPES, V. (2012). Green Buildings: Analysis of State of Knowledge. International Journal of Construction Engineering and Management, 1(3):27-32. doi: 10.5923/j.ijcem.20120103.03. (link)

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

 

La importancia de las líneas de vida en los trabajos en altura

La instalación de líneas de vida anti caída es una práctica cada vez más habitual en el sector de la construcción. Su uso está muy indicado en trabajos en altura, donde no existen otros medios de protección colectiva, como por ejemplo en trabajos de remate o mantenimiento de cubiertas, trabajos en fachadas, etc. Según la normativa actual estas líneas de anclaje denominadas comúnmente líneas de vida se consideran protecciones colectivas al poder soportar simultáneamente varios sistemas anti caídas.

Existen dos tipos de líneas de vida en función del tiempo de uso. Por un lado tenemos las temporales, que se montan, usan y desmontan en la fase en la fase de obra que se requiere; y por otro, las fijas, que quedan en servicio a lo largo de la vida del edificio. Toda línea de vida ha de estar fabricada bajo norma, debe llevar tanto el certificado del fabricante como el certificado de su instalación. Normalmente el propio fabricante autoriza a una empresa instaladora a montar su material después de que sus operarios hayan recibido la formación adecuada, tanto en trabajos en altura como en los procedimientos de instalación.

Os dejo algunos vídeos al respecto que creo puede ser de interés.

 

Construcción de un forjado reticular

En las estructuras de edificación resulta interesante emplear forjados de losas planas por las ventajas funcionales, constructivas y económicas que presentan. Dentro de las soluciones de techo plano, los forjados reticulares con casetones recuperables de aligeramiento o bien perdidos de hormigón o poliestireno. Estos forjados tienen cada vez mayor presencia en el mercado como consecuencia de su adaptabilidad a geometrías en planta irregulares o complicadas, la facilidad que permiten en su replanteo de las perforaciones requeridas por las cada vez más numerosas instalaciones y su versatilidad para adecuarse a las exigencias de resistencia a fuego.

Un forjado reticular es un tipo de forjado constituido por una cápsula de nervios de hormigón armado, de pequeña anchura y a corta distancia unos de otros. Este sistema permite suprimir las vigas, macizando únicamente las zonas cercanas a los apoyos, dichos macizados son denominados capiteles y son los encargados de recibir las cargas del forjado y distribuirlas por los pilares.

Los casetones resisten el peso de los operarios. Sin embargo, representan una dificultad en cuanto a la circulación durante el proceso de puesta en obra de las armaduras y durante los trabajos de hormigonado.

Para garantizar que se ha realizado un buen montaje de este tipo de encofrado, hay que revisar una serie de puntos clave antes del hormigonado:

  1. Verticalidad de los puntales. Ello garantizará que los puntales trabajen a compresión, tal y como se diseñaron.
  2. La palanca del puntal debe estar hacia abajo, de esta forma se garantiza la máxima fricción entre las planchuelas y la caña del puntal, impidiendo que la caña descienda.
  3. El encofrado debe arriostrarse a todos los pilares para evitar desplazamientos horizontales.
  4. Refuerzo del apuntalamiento en las áreas macizadas.

Os paso el siguiente vídeo (www.cefaestructures.com) que explica la construcción forjado reticular mixto con pilares metálicos.

También os paso un vídeo de la Universidad de Alicante donde se puede ver el proceso constructivo detalle pilar extremo sobre muro de contención y enlace en forjado reticular para la asignatura de Construcción de Estructuras I.

También os paso el vídeo de Enrique Alario sobre el montaje de este tipo de forjado reticular de casetones recuperables.

Durabilidad en la fase de mantenimiento de los edificios

Durante la vida de servicio los edificios se deterioran y llegan a la obsolescencia, debido entre otras causas a los efectos del clima, la utilización y el desgaste (Esteve, 2015). El deterioro empieza en el mismo momento en el que termina su construcción. El mantenimiento y las reparaciones garantizan la prolongación de la vida útil, logrando evitar el deterioro y, finalmente, su destrucción. Por tanto, la vida útil está estrechamente ligada al mantenimiento de una edificación.

El British Standars Institute define el mantenimiento de un edificio como “el trabajo acometido para mantener, restaurar o mejorar cada parte del edificio, sus servicios y sus alrededores, con las normas actualmente aceptadas, y para sostener la utilidad y el valor del edificio”. En definitiva, el mantenimiento es el conjunto de operaciones y cuidados necesarios para que los edificios e instalaciones puedan seguir funcionando adecuadamente.

Los edificios pueden fallar por numerosas razones: fallos de diseño, fallos de construcción, fallos de mantenimiento, fallos de materiales o fallos de utilización. Aunque los fallos de mantenimiento,  se pueden descomponer en dos partes:

  • Mantenimiento que ha sido llevado a cabo incorrectamente.
  • No se ha realizado ningún mantenimiento durante toda la vida del edificio. Éste último es el más común.

En un estudio llevado a cabo en Hong Kong en el año 2000 por Lam (2009), se reveló que aproximadamente el 40% de los fallos de mantenimiento estaban relacionados con el diseño, el 30% estaban relacionados con la construcción o instalación y el 30% restante estaban relacionados con la gestión del mantenimiento.

Investigaciones como la de Chew et al. (2004) y Flores-Colen y J. Brito (2010) establecen que el proceso inevitable de deterioro se puede controlar y que la vida de servicio de los edificios puede extenderse si se mantienen adecuadamente. Las estrategias de mantenimiento son esenciales para controlar las primeras fases de degradación y para prevenir el fallo de los elementos del edificio. Además, la selección de las estrategias apropiadas y con mejor relación efectividad-coste pueden minimizar la disminución en el rendimiento de los edificios durante su ciclo de vida completo.

Para poder realizar adecuadamente la planificación de las tareas de mantenimiento, es necesario disponer de información fiable sobre la vida de servicio de los componentes de edificación. Si la durabilidad de los materiales se conoce, se puede identificar el intervalo de tiempo necesario para el mantenimiento y reparación de los componentes de las edificaciones. Según Straub (2011), faltan referencias fiables sobre la vida de servicio de los productos de construcción.

Por último, los costes de mantenimiento representan la mayor parte del coste total en la vida completa de un edificio. Según Griffin (1993), el coste inicial, correspondiente al diseño y construcción, podría representar únicamente alrededor del 25% del coste total, mientras que los costes de mantenimiento y operación supondrían del 50% al 80% del coste durante su vida de servicio.

Referencias:

  • Chew, M. Y. L., Tan, S. S., & Kang, K. H. (2004). Building maintainability – review of state of the art. Journal of Architectural Engineering, 10(3), 80-87.
  • Esteve, V.F. (2015). Estado del arte de los factores que afectan a la durabilidad de las edificaciones. Trabajo Fin de Máster. Máster en planificación y gestión de la ingeniería civil. Universitat Politècnica de València.
  • Flores-Colen, I., & De Brito, J. (2010). A systematic approach for maintenance budgeting of buildings faades based on predictive and preventive strategies. Construction and Building Materials, 24(9), 1718-1729.
  • Griffin, J. J. (1993). Life cycle cost analysis: A decision aid. Blackie Academic & Professional, London.
  • Lam, K. C. (2000). Quality assurance in management of building services maintenance. Building Services Engineering Department, The Hong Kong Polytechnic Univ.
  • Straub, A. (2011). To a new dutch service life database of building products. COBRA 2011 – Proceedings of RICS Construction and Property Conference, 135-145.

Durabilidad y vida útil de las infraestructuras

2014-11-12 16.38.52
Deterioro prematuro del hormigón. Imagen: V. Yepes

La durabilidad de las construcciones constituye uno de los aspectos clave que preocupan y van a preocupar a los técnicos en las próximas décadas. Tras un crecimiento masivo en la construcción, se plantean problemas tan serios como el mantenimiento y la sostenibilidad de las infraestructuras, de forma que se consigan los indicadores mínimos de servicio que permitan un uso seguro y adecuado de las mismas. Estamos inmersos, de hecho, en una verdadera “crisis de las infraestructuras”, fuertemente relacionada con la crisis financiera, económica, social y ética que nos envuelve en este momento. Todo ello, como podemos ver, tiene que ver con la durabilidad, tal y como vimos en una tesis de máster que dirigí recientemente (Esteve, 2015). Para poder hablar sobre los factores que afectan a la durabilidad, es necesario primero definir el concepto de durabilidad según la normativa y según diversos autores, así como el concepto de vida útil, final de vida útil y rendimiento. También se definen otros conceptos aparecidos en el estudio, como vulnerabilidad y mantenibilidad.

puente-romano
Cayo Julio Lacer,  y la leyenda “que durará tanto cuanto el mundo durare”, constituye la lección más importante para los ingenieros siempre que se visita el puente de Alcántara (Cáceres).

Durabilidad

 

TROMPILLO-ROLANDOLa Instrucción de Hormigón Estructural (EHE-08) define la durabilidad de una estructura de hormigón como “su capacidad para soportar, durante la vida útil para la que ha sido proyectada, las condiciones físicas y químicas a las que está expuesta, y que podrían llegar a provocar su degradación como consecuencia de efectos diferentes a las cargas y solicitaciones consideradas en el análisis estructural. Una estructura durable debe conseguirse con una estrategia capaz de considerar todos los posibles factores de degradación y actuar consecuentemente sobre cada una de las fases de proyecto, ejecución y uso de la estructura”.

En la norma ISO 15686-1 se define la durabilidad como “la capacidad de los edificios o alguna de sus partes para desenvolver el papel para el cual fueron diseñados durante un período específico bajo la influencia de determinados agentes”.

El concepto de durabilidad también puede ser entendido como la “habilidad que un edificio o componente de un edificio tiene para alcanzar el rendimiento óptimo de sus funciones en un determinado ambiente o sitio, bajo un determinado tiempo sin realizar trabajos de mantenimiento correctivo ni reparaciones” (CSA, 2001).

Algunos autores han intentado ofrecer una definición de durabilidad más completa, teniendo en cuenta los efectos actuales del cambio climático. Es el caso de Mendoza y Castro (2009), que definen la durabilidad como “la capacidad de un material de construcción, elemento o estructura de hormigón de resistir las acciones físicas, químicas, biológicas y ambientales vinculadas al efecto del cambio climático global con su entorno durante un tiempo determinado previsto desde el proyecto, manteniendo su serviceabilidad y conservando su forma original, propiedades mecánicas y condiciones de servicio”. Se entiende por “serviceabilidad” (sic) como la capacidad de un producto, componente, ensamble o construcción para desempeñar las funciones para las cuales son diseñadas y construidas (ACI, 2000).

Vida útil

La Instrucción de Hormigón Estructural (EHE-08) define la vida útil de una estructura como el “período de tiempo, a partir de la fecha en la que finaliza su ejecución, durante el que debe mantenerse el cumplimiento de las exigencias. Durante ese período requerirá una conservación normal, que no implique operaciones de rehabilitación. La vida útil nominal depende del tipo de estructura y debe ser fijada por la Propiedad previamente al inicio del proyecto”. En esta instrucción, se emplea el término “vida útil” de forma equivalente a como lo hace el Código Técnico de la Edificación cuando hace referencia al “período de servicio”.

Acueducto de los Milagros (Mérida)
Acueducto de los Milagros (Mérida)

En la norma ISO 15686-1 se define la vida útil de un edificio como “el período de tiempo después de la instalación o construcción durante el cual un edificio o sus partes cumplen o exceden los requisitos mínimos de rendimiento para lo cual fueron diseñados y construidos”.

Muchas veces el concepto de vida útil es confundido con el de durabilidad. Según Silva (2001), puede considerarse que la vida útil es la cuantificación de la durabilidad, y por tanto es cada vez más importante que se proyecte y construya teniendo en cuenta criterios de durabilidad para, de ese modo, prolongar la vida útil de las edificaciones.

Algunos autores han propuesto una definición de vida útil o vida de servicio teniendo en cuenta los efectos actuales del cambio climático. Es el caso de Mendoza y Castro (2009), que definen la vida de servicio como el “periodo de tiempo durante el cual el desempeño de un material, elemento o estructura de hormigón conserva los requerimientos de proyecto en términos de seguridad (resistencia mecánica y estabilidad, seguridad en caso de incendio, seguridad en uso), funcionalidad (higiene, salud y medio ambiente, protección contra el ruido y ahorro energético y confort térmico) y estéticos (deformaciones, agrietamientos, desconchamientos), con un mínimo de mantenimiento que permita controlar los efectos del cambio climático global en su entorno”.

Fin de la vida útil

Es difícil determinar cuándo se produce el final de la vida útil de una edificación. Según autores como Talon et al. (2004) “el final de la vida útil llega cuando los materiales o componentes de construcción, una vez instalados y construidos, usados y aplicados a una parte del inmueble, ya no responden a los requerimientos de rendimiento; y cuando por sus fallos físicos ya no es conveniente económicamente seguir con un mantenimiento correctivo para dichos componentes”.

2013-06-15 09.33.18
¿Cuál será la vida útil de nuestras modernas infraestructuras? Ciudad de las Artes y las Ciencias (Valencia). Imagen: V. Yepes

Por su parte, otros autores como Gaspar (2002) definen el final de la vida útil de una construcción como un “punto en el tiempo en el cual ésta deja de poder asegurar las actividades que en ella se desarrollan, por obsolescencia funcional, falta de rentabilidad económica o degradación física de sus componentes más determinantes”.

En definitiva, el final de la vida útil se dará cuando los requisitos esenciales dejen de cumplirse. Los requisitos esenciales establecidos en el Código Técnico de la edificación son:

  • Seguridad estructural.
  • Seguridad en caso de incendio.
  • Seguridad de utilización y accesibilidad.
  • Higiene, salud y protección del medio ambiente.
  • Protección frente al ruido.
  • Ahorro de energía.

En la siguiente gráfica, elaborada por Ferreira (2009), se muestra como el fin de la vida útil está condicionado por criterios de seguridad, funcionalidad y aspecto. La seguridad es el criterio más importante, por lo que tiene un nivel de exigencia superior a los otros dos criterios. A pesar de eso, algunas veces el fin de la vida útil puede verse condicionado sólo por criterios estéticos o funcionales, como muestra la siguiente figura:

Sin título
Degradación de las diferentes propiedades de un elemento constructivo (Ferreira, 2009)

Rendimiento

El rendimiento, según la definición de Trinius (2005), “es la capacidad del material para cumplir con sus funciones dentro del sistema edificado, y se puede medir tanto cuantitativamente como cualitativamente, dependiendo de los requerimientos de diseño y de las condiciones de la fase de uso, operación y mantenimiento del inmueble”.

Por su parte, el British Standards Institute define el rendimiento de una edificación como el comportamiento de un producto durante su utilización.

Tal como establece Mairteinsson (2005), tanto la vida útil como el rendimiento dependerán directamente de los factores de uso del material, no solamente de manera aislada, sino de manera integrada al edificio como parte de un sistema completo.

Vulnerabilidad

La vulnerabilidad, según es entendida por Monjo (2007), “es el conjunto de debilidades (procesos patológicos posibles) que presenta un elemento constructivo al quedar expuesto a las acciones exteriores previsibles durante su vida útil”. La vulnerabilidad depende de la calidad del elemento constructivo, es decir. De sus características físicas y químicas, así como de la solución constructiva empleada. Puede considerarse la inversa de la durabilidad.

Según este autor, la durabilidad de un producto de construcción debe establecerse en función del análisis de su vulnerabilidad, y dicha vulnerabilidad depende de una serie de condiciones objetivas que afectan al elemento constructivo:

  • La función constructiva del elemento en el edificio.
  • Las acciones externas que actúan sobre el elemento constructivo.
  • La calidad del producto

Mantenibilidad

La norma ISO/IEC 2382-14 define la mantenibilidad como “la habilidad de una unidad funcional, bajo unas condiciones de uso dadas, para ser mantenidas, o restauradas a un estado en el cual puedan realizar sus funciones requeridas, cuando el mantenimiento es ejecutado bajo condiciones establecidas y utilizando procedimientos y recursos prescritos”.

Por su parte, Chew y Silva (2003) expresan el término mantenibilidad como la habilidad de lograr el rendimiento óptimo a través de la vida útil del edificio con un mínimo coste de ciclo de vida.

Referencias:

ACI American Concrete Institute. (2000). Reported by ACI Committee 365 (365.1R-00), Service-Life Prediction, State-of-the-Art Report.

Chew, M. Y. L.; De Silva, N. (2003). Maintainability problems of wet areas in high-rise residential buildings. Building Research and Information, 31(1), 60-69.

CSA Canadian Standards Association. (2001). Guideline on Durability in buildings. Canadá, S478-95, 9-17.

Esteve, V.F. (2015). Estado del arte de los factores que afectan a la durabilidad de las edificaciones. Trabajo Fin de Máster. Máster en planificación y gestión de la ingeniería civil. Universitat Politècnica de València.

Ferreira, A. F. (2009). Previsão da vida útil de revestimentos de pedra natural de paredes. Instituto Superior Técnico. Lisboa: Universidad Técnica de Lisboa.

Gaspar, P. L. (2002). Metologia para o cálculo da durabilidade de rebocos exteriores correntes. Instituto Superior Técnico. Lisboa: Universidad Técnica de Lisboa.

ISO 15686:2011. (2011). ISO (Ed.), Buildings and constructed assets, service life planning.

Marteinsson, B. (2005). Service life estimation in the design of buildings; a development of the factor method. Tesis Doctoral, KTH Research School, Centre for Built Environment, University of Gävle, Suecia.

Mendoza, J. M., Castro, P. (2009). Credibility of concepts and models about service life of concrete structures in the face of the effects of the global climatic change. A critical review. Materiales de construcción, 59(276), 117-124.

Monjo, J. (2007). Durability vs Vulneravility. Informes de la construcción, 59(507), 43-58.

Silva, T. (2001). Como estimar a vida util de estruturas projetadas com critérios que visam a durabilidade. II Workshop sobre Durabilidad de las Construcciones, Sao José dos Campos, Brasil, 133-143.

Talon, A., Boissier, D., Chevalier, J. L., & Hans, J. (2004). A methodological and graphical decision tool for evaluating building component failure. CIB World Building Congress, Toronto, Canadá.

Trinius, W. (2005). Performance based building and sustainable construction. CEN Construction Sector Network Conference, Prague.

Optimización de forjados de losa postesada utilizando criterios económicos y de sostenibilidad

ALCALÁ, J.; YEPES, V.; MARTÍ, J.V.; RODRÍGUEZ-FACUNDI, A. (2014). Optimización de forjados de losa pretensada utilizando criterios económicos y de sostenibilidad. VI Congreso de ACHE, 3-5 de junio, Madrid. ISBN: 978-84-89670-80-8.

RESUMEN

En ese trabajo se muestran las características principales de los forjados de losa postesa obtenidos con técnica heurísticas de optimización estructural. Estos métodos de optimización permiten una definición completa de la estructura, pudiéndose encontrar diseños completos de forjados optimizados tanto con criterios de economía como de sostenibilidad. Los resultados obtenidos en este trabajo muestran una clara tendencia a disponer cantos muy estrictos en los resultados óptimos. Aplicando criterios de sostenibilidad se tiende a hormigones de mayores resistencias que con criterios económicos. Finalmente se han realizado pruebas de sensibilidad a los precios, que muestran mucha independencia de los forjados óptimos frente a las variaciones de precios ensayadas.

PALABRAS CLAVE

Optimización, forjados postesados, sostenibilidad, simulated annealing, threshold accepting, old bachelor algorithm.

Plataformas de carga y descarga

La plataforma de carga y descarga para obras de construcción es un medio auxiliar utilizado frecuentemente para la recepción y entrada de material dentro de un edificio en construcción. Consiste en una estructura metálica montada sobre dos perfiles metálicos estructurales con una longitud tal que permite la fijación de los mismos al forjado a través de puntales del tipo refuerzo. La citada plataforma se monta en el borde del forjado, de manera que queda en voladizo respecto al mismo, con el fin de depositar sobre ella materiales para carga y descarga.

En el vídeo que os paso se analiza su montaje, uso y desmontaje, así como las medidas preventivas correspondientes.