Pavimentos de hormigón compactado con rodillo para carreteras

Figura 1. Pavimento de hormigón compactado con rodillo (HCR). https://www.youtube.com/watch?v=tMCJGh0FLr0

Los pavimentos de hormigón en masa incluyen los pavimentos de hormigón compactado con rodillo (HCR), que se caracterizan por una consistencia muy seca (una relación agua/cemento de 0,35 – 0,40) y requieren una compactación intensa mediante rodillos vibratorios y neumáticos, similar a la técnica utilizada para la gravacemento. A pesar de ello, el contenido de cemento es comparable al de un hormigón para pavimentos (no inferior a 300 kg/m³) y se emplean cementos especiales con un alto contenido de cenizas volantes (superior al 35 %). En el caso de caminos y vías rurales, esta solución resulta económica, duradera y de fácil ejecución.

El HCR puede producirse en una planta mezcladora de suelo-cemento o de mezcla granular, así como en una planta hormigonera con paletas móviles. Las dos primeras se dosifican por volumen, mientras que las segundas lo hacen por peso. Se ha demostrado que la dosificación por peso es más eficiente, pues garantiza una mezcla uniforme de áridos, cemento y agua. Por otro lado, se ha comprobado que la dosificación por volumen puede provocar variaciones significativas en la mezcla.

La extensión la ejecuta una extendedora de mezcla bituminosa o una motoniveladora, que son las máquinas más empleadas en la construcción de carreteras. Después de compactar la superficie y aplicar un riego para protegerla (que puede ser el mismo que se utiliza para el curado), el hormigón compactado puede abrirse al tráfico en un tiempo relativamente corto. Por lo tanto, este método resulta útil para refuerzos de carreteras con tráfico constante.

Figura 2. Pavimento de hormigón compactado con rodillo (HCR). https://docplayer.es/81543537-Concreto-compactado-con-rodillos-aplicacion-en-pavimentos-1.html

El HCR puede compactarse en una sola capa con equipos similares a los empleados en el aglomerado asfáltico. Estos equipos incluyen un rodillo vibrante liso y un rodillo neumático. El primero es el encargado de compactar, lo que permite una rápida capacidad portante para el tráfico y una excelente resistencia mecánica a la tracción durante la fase de endurecimiento. Este rodillo debe tener una carga estática igual o superior a 30 kg/cm de generatriz y de tracción en el rodillo vibrante. Por otro lado, el rodillo neumático se emplea para el «amasado y la terminación superficial» que el rodillo liso vibrante no puede lograr. Se utiliza con una carga de 3000 kg por rueda y una presión de inflado mayor o igual a 8 kg/cm².

El proceso de compactación comienza con el rodillo estático y, a continuación, se vibra el material hasta alcanzar el número de pasadas necesario para lograr un peso específico igual o superior al 97 % del máximo obtenido para la mezcla. No hay un número fijo de pasadas con el rodillo liso ni con el rodillo neumático, pues todo depende de las características de la base, del material y del equipo disponible, del espesor y del clima. Finalmente, se emplea el rodillo neumático (10-12 pasadas) para mejorar la terminación superficial, borrando las pequeñas deficiencias que puedan quedar tras el paso del rodillo liso y corrigiendo las fisuras superficiales. En esta etapa es esencial contar con un equipo de riego por aspersión, en caso de ser necesario, para mantener la humedad óptima y asegurar que la superficie permanezca húmeda sin formar charcos, especialmente en días calurosos y ventosos.

La compactación de los bordes es un aspecto crítico. En los laterales, se recomienda utilizar bordillos (en el caso de pavimentos urbanos) para lograr una mejor compactación. Si no hay bordillos disponibles, se puede extender el material del arcén y realizar una primera pasada con el rodillo a lo largo del borde antes de la compactación. Posteriormente, se debe realizar una segunda pasada sobre el borde antes de continuar con la compactación normal. Es importante contar con una contención lateral para evitar la descompactación del borde. Si se trabaja por carriles, se debe dejar una tira longitudinal central sin compactar, de alrededor de 40 cm de ancho, que actúe como contención. Luego, se compactará esta tira junto con el segundo carril. El mismo procedimiento se seguirá para la contención lateral, compactando la tira junto con el material de los arcenes.

Para el curado, se recomienda aplicar emulsión asfáltica aniónica tras la compactación para prevenir la pérdida de humedad y permitir que el conglomerante reaccione y fragüe adecuadamente (hidratación del cemento). Se sugiere emplear un camión regador para distribuir la emulsión asfáltica sin transitar por la capa recién compactada. Si se requiere la circulación de vehículos, se debe aplicar una capa de arena de aproximadamente 2 a 6 mm de espesor con una proporción de 4 a 7 litros por metro cuadrado, después de que la emulsión se haya secado, para evitar que las ruedas levanten el asfalto. Si no hay tráfico, se pueden utilizar productos de curado basados en polímeros que evitan la evaporación del agua y crean una superficie más resistente al reaccionar con la capa superficial de unos pocos milímetros del material puesto en obra.

Si se cubre el pavimento de HCR con una capa asfáltica, no se marcarán juntas, a menos que sea necesario realizar una junta transversal de construcción al final de la jornada o debido a interrupciones prolongadas. La junta transversal de construcción se cortará verticalmente, a una profundidad de 1/5 del espesor. En primer lugar, se extiende una cuña de hormigón seco para facilitar la salida de los equipos de compactación al final del día. Luego, se corta un poco de este hormigón seco con una motoniveladora y se rellena el espacio adyacente con grava. Las motoniveladoras dejan los bordes verticales, compactan y, al día siguiente, antes de iniciar los trabajos, retiran la grava sin tratar y la cuña de hormigón seco.

En caso de no cubrir el pavimento de HCR, se pueden cortar juntas transversales de contracción con separaciones de entre 12 y 15 m utilizando sistemas tradicionales, o bien permitir que se produzcan libremente, sin corte previo. Si se trabaja por carriles, para evitar la formación de juntas longitudinales en la unión de dos carriles contiguos, se dejará sin compactar un cordón longitudinal central de unos 40 cm de ancho en el primer carril. Este cordón se compactará al ejecutar el segundo carril.

El comportamiento del HCR es similar al de los pavimentos tradicionales de hormigón vibrado. Sin embargo, cuando se compacta con rodillo, la regularidad superficial que se logra a menudo no es suficiente para soportar altas velocidades de circulación. Por esta razón, en las autopistas suele colocarse una o varias capas de mezcla bituminosa. No obstante, actualmente se están construyendo algunos pavimentos HCR con extendedoras, lo que permite prescindir de la capa de rodadura bituminosa en algunos casos.

En las carreteras secundarias, se permite que el hormigón se fisure libremente por retracción, aunque a menudo se crean juntas mediante serrado. En cambio, en las carreteras principales es aconsejable colocar juntas transversales cercanas en el momento del vertido, a una distancia de unos 3 m, para que no se abran demasiado ni se reflejen en la posible capa de pavimento bituminoso.

El proceso constructivo del pavimento HCR sigue, en esencia, los mismos pasos que el de un pavimento ordinario. Estos son:

  1. Preparación de la mezcla de hormigón in situ o cerca de ella. En algunos casos, se pueden agregar aditivos para retrasar el endurecimiento.
  2. Transporte de la mezcla en camiones basculantes.
  3. Colocación de hormigón con la máquina de pavimentación habitual de asfalto.
  4. Compactación del hormigón con rodillos, que debe realizarse dentro de los 60 minutos posteriores a la mezcla, cuando el hormigón aún está fresco y maleable.
  5. Aplicación de técnicas de curado para aumentar la resistencia y la durabilidad del pavimento y eliminar posibles grietas.
  6. Corte con sierra y sellado de juntas.
  7. Rectificaciones, si es necesario, con discos de diamante devastadores.

Os dejo algunos vídeos que espero os aclaren los aspectos constructivos de este pavimento.

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimento continuo de hormigón armado para carreteras

Figura 1. Colocación de armadura en un pavimento de hormigón armado continuo.

El Pavimento Continuo de Hormigón Armado (PCHA) no requiere juntas transversales de contracción. Básicamente, se trata de un pavimento de hormigón armado con juntas, pero con una armadura suficiente para que la distancia sea infinita. Cuando se ejecuta adecuadamente, este pavimento requiere un mantenimiento mínimo. Los PCHA buscan proporcionar superficies cómodas y sin interrupciones. Mediante el cálculo de cargas, la retracción y los cambios de temperatura, se puede anticipar la resistencia del pavimento y controlar su tendencia a agrietarse, como en cualquier otra estructura de hormigón armado. Las ventajas de este tipo de pavimento son su seguridad, su coste y su compatibilidad con pavimentos existentes de mezcla bituminosa o con superficies de hormigón en mal estado, pues no requieren su eliminación previa.

La eliminación de las juntas transversales implica aumentar la cuantía de la armadura longitudinal de acero de alto límite elástico a valores superiores a 10 kg/m². La eliminación de las juntas transversales permite reducir el espesor de la capa de hormigón y ampliar su campo de aplicación, aunque su elevado coste inicial hace que su uso esté más extendido en firmes que soporten altos niveles de tráfico pesado, especialmente en autopistas y carreteras principales.

Inicialmente, estos pavimentos se utilizaban principalmente en firmes de nueva construcción. Sin embargo, en los últimos años también se han empleado como refuerzo de firmes ya existentes, tanto rígidos como flexibles, y en la reconstrucción de carriles para vehículos pesados en autopistas. Los pavimentos de hormigón armado continuo también se utilizan en pistas de aterrizaje y despegue de aeropuertos, como en el aeropuerto de Narita (Tokio) y en la base francesa de Lorient-Lann-Bihoué. Además, se usan en glorietas, túneles, plataformas industriales y en carreteras donde se espera un asentamiento diferencial, ya que la corta distancia entre las grietas del pavimento permite que se divida en pseudolosas de pequeña longitud, lo que facilita su adaptación a los movimientos del terreno de base.

Figura 2. Sección de un Pavimento Continuo de Hormigón Armado (PCHA)

El PCHA se utilizó por primera vez en Estados Unidos en 1938, en autopistas con tráfico pesado, pero pasó más de una década hasta que se empezó a experimentar su uso en Europa. Bélgica fue el primer país en aplicarlo en tramos experimentales y en utilizarlo comúnmente en autopistas y carreteras importantes. En 1963, se realizaron pruebas experimentales en la N-II, cerca de Madrid, y se construyeron 43 km de la autopista Oviedo-Gijón-Avilés en 1975. A partir de 1990, se construyeron algunos tramos de la autopista del Cantábrico. Aunque su uso en España es limitado, existe una técnica madura y fiable para su desarrollo.

Debido a la alta cantidad de armadura principal que poseen en dirección longitudinal (entre el 0,6 % y el 0,7 %), los PCHA tienden a desarrollar fisuras transversales de manera natural en intervalos pequeños y aleatorios (generalmente de 0,8 a 2,0 m). La función principal de la armadura es limitar la fisuración por retracción y por temperatura, y la secundaria, absorber las tracciones estructurales. La armadura transversal, que representa entre el 0,05 % y el 0,10 %, actúa como soporte de las barras longitudinales y puede ser prescindible. Según el PG-3, los solapes deberían ser inferiores al 20 % del total.

Generalmente, se deja una distancia de aproximadamente 15 cm entre las barras longitudinales para facilitar el vertido del hormigón. Por su parte, las armaduras transversales se colocan como soporte de las barras longitudinales y para mantener su posición relativa entre sí. No obstante, en los últimos años se ha popularizado el uso de equipos con guías para colocar las barras longitudinales en su posición final durante el vertido del hormigón, lo que permite prescindir de las armaduras transversales.

La cantidad de armadura longitudinal necesaria en un PCHA depende de varios factores, incluyendo el límite elástico del acero y la resistencia característica a flexo-tracción del hormigón. En el caso de hormigones HP-4,5 (4,5 MPa), esta cantidad suele situarse entre el 0,65 % y el 0,7 %. Generalmente, se emplean barras corrugadas de alto límite elástico (510-620 MPa) como armadura en este tipo de pavimentaciones.

La distancia entre las fisuras y su apertura son inversamente proporcional a la cantidad de acero dispuesta. Según datos empíricos, la distancia deseable entre fisuras oscila entre 1 y 3 m, siendo lo óptimo entre 1,5 y 2 m. El ancho de las fisuras debe ser inferior a 0,5 mm. Además, es importante que la distribución de las fisuras sea homogénea para asegurar la transferencia de cargas a través de ellas sin desniveles ni degradación bajo el tráfico. Las fisuras deben estabilizarse a los 4 o 5 años. Para lograrlo, es necesario seguir las indicaciones previas sobre la cantidad de acero, la separación óptima de las barras, el porcentaje de solapamientos, entre otros factores.

En las primeras etapas del uso del acero en PCHA, se solía colocar la armadura en el tercio superior de la losa para mantener cerradas las fisuras en esa zona y para que la armadura actuara como «armadura de piel» y resistiera los desprendimientos de hormigón debidos al tráfico. Sin embargo, con la evolución de la técnica, se ha descubierto que resulta preferible colocar la armadura a mitad de espesor. Esto no solo reduce el riesgo de corrosión, sino que también mejora la regularidad superficial del pavimento al evitar las ligeras ondulaciones causadas por la «reflexión» de la armadura en la superficie.

Figura 3. Esquema de un Pavimento Continuo de Hormigón Armado (PCHA)

Esta técnica es poco competitiva debido al elevado coste del acero, pero es posible reducir su cuantía a casi la mitad sustituyendo las barras por bandas corrugadas de acero de muy alto límite elástico. Estas bandas tienen una sección transversal de 2 x 40 mm² y se suministran en bobinas desenrollables. Aunque los pavimentos de hormigón armado tienen un costo de construcción más elevado que los pavimentos de hormigón simple con juntas, los PCHA presentan la ventaja de requerir poco mantenimiento y de tener una vida útil más larga que otros tipos de pavimentos si se ejecutan correctamente. No obstante, debido a su elevado coste, este tipo de pavimento no suele utilizarse, salvo en casos muy especiales de tráfico muy pesado, especialmente si se trata de refuerzos.

Os dejo una presentación de IECA sobre este tipo de pavimentos.

Pincha aquí para descargar

Algunas organizaciones promotoras del empleo del cemento han editado publicaciones que explican sus ventajas. Os dejo un vídeo explicativo de IECA que muestra cómo se construye este pavimento. Espero que os guste.

Otro vídeo sobre el mismo tema es el siguiente:

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El hormigón para pavimentos en carreteras

Figura 1. Pavimento de hormigón. https://www.fcc.es/-/el-pavimento-de-hormigon-regresa-a-las-carreteras-espanolas

Para que el hormigón de pavimento sea efectivo, debe resistir tanto el impacto del tráfico como las condiciones climáticas. A diferencia del hormigón estructural, que se somete principalmente a la compresión, el hormigón de pavimentos debe resistir la flexotracción. Las fisuras siempre aparecen donde la resistencia a la tracción es menor que en el resto del material, o en una zona con una mayor concentración de tensiones.

Los pavimentos presentan una geometría que los hace propensos a las fisuras, pues su gran superficie inferior, en contacto con la base, restringe la contracción, mientras que su cara superior está expuesta a la evaporación. Para prevenir esta situación, es importante tener en cuenta las siguientes recomendaciones:

  • Evitar el uso de relaciones agua/cemento inferiores a 0,40.
  • Impedir el intercambio de humedad entre la base y el ambiente mediante la saturación temprana de la base y el curado.
  • Evitar condiciones de restricción elevadas en la base.
  • Usar áridos limpios, libres de polvo y saturados.
  • Diseñar las mezclas de hormigón para obtener un adecuado nivel de ganancia de resistencia temprana y asegurar una exudación adecuada.

La normativa técnica exige ensayos específicos de flexotracción en probetas prismáticas para controlar la resistencia. La calidad del hormigón para carreteras debe ser superior a la de un hormigón para edificación, debido a las cargas repetidas del tráfico y a los efectos del clima. Este debe ser homogéneo, compacto y presentar las características mecánicas adecuadas a la categoría de la carretera y a las condiciones climáticas. La resistencia característica a flexotracción se sitúa, por lo general, entre 3,5 y 4,5 MPa tras 28 días.

Para pavimentar carreteras, se requiere el uso de hormigones con una resistencia mínima a la flexotracción de 3,5-4,0 o 4,5 MPa a los 28 días. Estos hormigones se conocen como HF-3,5, HF-4,0 y HF-4,5, según el artículo 550 «Pavimentos de hormigón vibrado» del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3) del Ministerio de Fomento de España. Estas designaciones corresponden aproximadamente a resistencias a la compresión de 25, 30 y 35 MPa a los 28 días. Sin embargo, la relación entre las resistencias a la compresión y a la flexotracción varía según las materias primas y la dosificación empleadas.

En general, para los pavimentos de hormigón no es necesario emplear cementos «especiales». Por lo general, se utilizan cementos con una resistencia a la compresión de entre 30 y 40 MPa a los 28 días y una dosificación de entre 300 y 350 kg/m³, según la categoría de la carretera, las condiciones de ejecución y las propiedades requeridas. Se pueden emplear tanto cementos Portland como cementos con adiciones (como escorias, puzolanas, cenizas volantes, etc.). Estos últimos, en general, tienen una velocidad de fraguado más lenta, un menor contenido energético y un menor calor de hidratación que los Portland, lo que los hace más económicos. No obstante, se debe controlar el empleo de elevados volúmenes de adiciones, sobre todo en épocas de tiempo frío, y limitar el contenido de adiciones incluidas en el cemento al 20 %.

La dosificación mínima de cemento en el hormigón fresco será de 300 kg/m³, y la relación ponderal entre agua y cemento no deberá superar 0,46 para garantizar la resistencia y la durabilidad. En el caso de pavimentos bicapa con eliminación del mortero superficial, el contenido de cemento en la capa superior de hormigón fresco no debe ser inferior a 450 kg/m³. La consistencia más adecuada para estos hormigones es seco-plástica, con una medida de asentamiento en cono de Abrams que oscile entre 2 y 6 cm. Además, el árido grueso debe tener un coeficiente de Los Ángeles inferior a 35.

En función del tipo de textura que se desee obtener en el pavimento, se requerirá un árido fino o grueso con ciertas características específicas de desgaste y naturaleza. Si se busca una textura de árido visto en la que los vehículos estén en contacto directo con el árido grueso, este deberá tener un coeficiente de pulimento acelerado (CPA) no inferior a 0,50. Si se incrusta gravilla en la superficie del hormigón fresco, el coeficiente de Los Ángeles no debe superar 20.

Para texturas obtenidas mediante cepillado o estriado, en las que el mortero del hormigón entra en contacto con el tráfico, se requerirá que el porcentaje de arena silícea sea superior al 35 % (30 % en el caso de categorías de tráfico T2 o inferiores) para garantizar su durabilidad.

Se recomienda utilizar cemento de la clase resistente más baja posible, preferiblemente 32,5, que tenga una resistencia inicial normal (N). Se aconseja el uso de cementos con un alto porcentaje de adiciones activas para pavimentos. Sin embargo, si se requiere una apertura rápida al tráfico, se pueden emplear cementos de mayor categoría resistente (42,5 o 52,5) y de alta resistencia inicial (R).

Se aconseja utilizar aditivos plastificantes para facilitar la puesta en obra del hormigón, aunque hay que tener en cuenta que pueden retrasar el tiempo de fraguado. En las zonas donde se produzcan nevadas o heladas, es obligatorio incluir un inclusor de aire para crear poros que actúan como «cámaras de expansión». De esta manera, el agua puede aumentar de volumen al congelarse sin provocar desconchamientos durante las heladas. Además, los aditivos aireantes tienen un efecto plastificante y mejoran la tixotropía del hormigón fresco, evitando que los bordes del pavimento se desprendan al salir del equipo de encofrados deslizantes. La norma UNE-EN 12350-7 establece que la proporción de aire ocluido en el hormigón fresco vertido en obra no debe superar el 6 % en volumen. En este caso, la proporción de aire ocluido en el hormigón fresco no debe ser inferior al 4,5 % en volumen. Es crucial controlar el nivel de incorporación de este tipo de aditivos, ya que puede provocar una pérdida de resistencia.

La homogeneidad de las características del hormigón, como su consistencia y resistencia, es fundamental para obtener buenos resultados, especialmente cuando se emplea un proceso de puesta en obra mecanizado. La norma UNE-EN 12350-2 establece que la consistencia del hormigón debe estar entre 1 y 6 cm de asentamiento. El valor y los límites admisibles de los resultados deben ser indicados por el Pliego de Prescripciones Técnicas Particulares o, en su defecto, por el Director de las Obras. Además, pueden especificarse otros procedimientos alternativos para determinarlo.

Por otro lado, la masa unitaria de las partículas cernidas por el tamiz 0,125 mm (según la norma UNE-EN 933-2), incluido el cemento, no debe superar los 450 kg/m³. Sin embargo, en las capas superiores de los pavimentos bicapa, este valor puede aumentarse en 50 kg/m³. Es importante destacar que estos pavimentos deben cumplir con las limitaciones establecidas en la Tabla 550.4.

TABLA 550.4 Limitación del contenido máximo de finos en pavimentos bicapa (PG-3)

CAPA DEL PAVIMENTO PORCENTAJE DE PARTÍCULAS CERNIDAS POR EL TAMIZ 0,063 mm (NORMA UNE-EN 933-2)
ÁRIDO GRUESO ÁRIDO FINO
CAPA SUPERIOR < 0,5 % < 10 %
CAPA INFERIOR < 1,5 % < 10 %

 

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón en masa con juntas para carreteras

Figura 1. Estructura tipo de un pavimento rígido

Existen varios tipos de pavimentos de hormigón que se clasifican según la presencia o ausencia de armaduras y la disposición de las juntas (Figura 1). Los pavimentos de hormigón en masa o de hormigón armado con juntas, y los pavimentos continuos de hormigón armado, son los más comunes en carreteras, mientras que los pavimentos de hormigón pretensado, los de hormigón armado con fibras, los de hormigón compactado con rodillo, los de hormigón poroso y los de elementos prefabricados (losas o adoquines) son menos frecuentes.

A continuación, se detallan los pavimentos de hormigón en masa con juntas, considerados los más económicos y sencillos de construir (Figura 2). Estos pavimentos son habituales en diversas categorías de tráfico y soportan un promedio de hasta 2000 vehículos pesados por carril y día. El control de la fisuración se logra mediante la inclusión de juntas, ya sean longitudinales o transversales, que pueden cumplir diferentes funciones, como juntas de construcción, de contracción o de dilatación, según su diseño.

Figura 2. Pavimento de hormigón en masa con juntas.

La fisuración se controla dividiendo el pavimento en losas con una separación entre juntas transversales de 3,5 a 6,0 m, que depende, entre otros factores, del tipo de base, del espesor y del coeficiente de expansión térmica (Figura 3). La separación entre juntas en una losa está estrechamente relacionada con su espesor. Si no hay grandes gradientes de temperatura, la distancia entre las juntas no debería exceder 25-30 veces el espesor de la losa. Si hay gradientes de temperatura importantes, la separación entre juntas debe reducirse a 15-20 veces el espesor de la losa. Se recomienda colocar las juntas a distancias inferiores a 5 m, y si no hay pasadores, no deben superar los 4 m. Como regla general, las losas deben ser rectangulares y la relación entre sus lados no debe exceder 1,5. En calzadas con un ancho mayor de 5 m, se deben disponer juntas longitudinales.

Figura 3. Esquema de un pavimento de hormigón en masa con juntas

La transferencia de carga a través de las juntas es un factor relevante que condiciona el rendimiento de los pavimentos. Una mala transferencia de carga puede provocar problemas como el escalonamiento de las juntas, la erosión de las bases debido a la eyección de agua con suelo fino (también conocido como «bombeo») y roturas de las esquinas. En este tipo de juntas, existen dos mecanismos de transferencia de carga: la trabazón entre los áridos y el uso de pasadores.

Con frecuencia, se colocan barras de unión de acero corrugado en las juntas longitudinales para mantener unidas las losas adyacentes. Estas barras permiten la deformación debida al gradiente térmico, pero evitan la separación de las juntas entre los carriles de circulación y el escalonamiento causado por el tráfico. A pesar de ello, estos fenómenos suelen ocurrir con escasa frecuencia en las juntas longitudinales.

Con tráficos medios (IMD entre 200 y 2000 vehículos pesados), suele emplearse pasadores en las juntas transversales para mejorar la transmisión de cargas entre las losas. Se trata de barras de acero lisas y no adheridas al hormigón, situadas a mitad de espesor, paralelas entre sí y al eje de la vía. De esta manera, se garantiza que las losas a ambos lados de la junta presenten una deflexión similar al paso de los vehículos. A pesar de que el empleo de pasadores reduce el espesor de las losas y aumenta la separación entre las juntas, también se han logrado excelentes resultados en pavimentos sin pasadores cuando las juntas se han dispuesto a una separación inferior a 4 m.

El diseño “californiano” prescinde de los pasadores (Figura 4), aunque solo se utiliza en España para el tráfico medio y ligero. Sin embargo, cuando se esperan más de 200 vehículos pesados por carril y sentido, se adoptan medidas para prolongar la vida útil del pavimento. Estas incluyen bases resistentes al desgaste como el hormigón magro o el gravacemento con mayor contenido de conglomerante, sistemas de drenaje para evitar la acumulación de agua en las juntas y los bordes del pavimento (drenes laterales o bases porosas) y la construcción de losas cortas (de aproximadamente 4 m) con juntas inclinadas 1:6 para minimizar las tensiones.

Figura 4. Pavimento de hormigón en masa con juntas transversales inclinadas (Kraemer et al., 1999)

Hay que evitar los finos de los arcenes cercanos para prevenir el escalonamiento del pavimento. Se pueden aplicar soluciones como zanjas porosas o bases drenantes sin finos, o bien estabilizadas con gravacemento o suelocemento. Sin embargo, la opción más efectiva suele ser un arcén de hormigón en masa con barras de unión al carril adyacente y una junta longitudinal sellada. Se ha comprobado que, con estas medidas, los pavimentos de hormigón en masa con juntas sin pasadores soportan el tráfico pesado, siempre y cuando no llueva mucho. Además, es importante considerar el efecto positivo que tiene un arcén de hormigón en la estructura y en la prevención de la erosión. No obstante, en España, los pasadores son obligatorios para el tráfico pesado y medio-alto.

La técnica californiana se adapta bien a las pavimentadoras de encofrados deslizantes, ya que no requiere pasadores. Antes de la década de 1980, los pasadores se introducían mediante vibración con una máquina que rodaba sobre encofrados fijos, o bien la pavimentadora debía detenerse en cada junta para colocar los pasadores con horquillas, lo que perjudicaba la regularidad superficial. Actualmente, las pavimentadoras cuentan con dispositivos que introducen los pasadores sin interrupciones y sin afectar al hormigón de la junta, lo que simplifica el proceso y aumenta su eficiencia. Además, el sobrecoste de utilizar pasadores es mínimo, lo que hace que esta solución sea competitiva para tráficos pesados y medios-altos.

Os dejo un webinar, desarrollado en 2020, del Instituto del Cemento Portland Argentino, sobre la ejecución de pavimentos de hormigón con tecnología convencional. Espero que os sea útil.

También recomiendo la videoconferencia sobre el diseño y la ejecución de juntas en pavimentos de hormigón, cuyo ponente es César Bartolomé, director del Área de Innovación de IECA. Espero que os guste.

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentación con hormigón

http://www.imcyc.com/revistacyt/jul10/pavimentos.htm

Se define como pavimento de hormigón en masa al constituido por un conjunto de losas de hormigón en masa separadas por juntas transversales, eventualmente dotado de juntas longitudinales; en el que el hormigón se pone en obra con una consistencia tal que requiere el empleo de vibradores internos para su compactación y maquinaria específica para su extensión y acabado superficial.

La ejecución del pavimento de hormigón incluye las siguientes operaciones:

  • Estudio y obtención de la fórmula de trabajo.
  • Preparación de la superficie de asiento.
  • Fabricación del hormigón.
  • Transporte del hormigón.
  • Colocación  de  elementos  de  guía  y  acondicionamiento  de  los  caminos  de rodadura para la pavimentadora y los equipos de acabado superficial.
  • Colocación de los elementos de las juntas.
  • Ejecución de juntas en fresco.
  • Terminación.
  • En su caso numeración y marcado de las losas.
  • Protección y curado del hormigón fresco.
  • Ejecución de juntas serradas.
  • Sellado de las juntas.
https://www.gomaco.com/

Para ampliar la información os remito al Pliego de Prescripciones Técnicas para Pavimentos de Hormigón, de IECA y al siguiente enlace para visualizar vídeos.

Construcción de un pavimento bicapa de hormigón con terminación de árido visto

Los pavimentos de hormigón pueden ejecutarse en dos capas. Se coloca una capa de rodadura de hormigón de pequeño espesor (de 4 a 5 cm) sobre otra capa de hormigón, que se extienden juntas para que funcionen como una capa única, creando así el pavimento descrito. Esto permite utilizar áridos de peor calidad en la capa inferior y reservar los de mayor calidad para la capa de rodadura, que debe cumplir estrictas exigencias de resistencia al desgaste y al pulimento. También se puede limitar la disminución del tamaño máximo del árido a la capa superior, lo que da como resultado un pavimento menos ruidoso (aunque requiere una mayor cantidad de cemento).

En España, no se han llevado a cabo experiencias significativas con pavimentos de hormigón bicapa construidos con dos tipos de hormigón diferentes, adaptados a las características requeridas para cada capa. Sin embargo, la Instrucción española 6.1-IC sobre secciones de firmes y el PG-3 permiten esta opción. Es importante destacar que el procedimiento constructivo es exigente y requiere la duplicación de los equipos de extendedoras y de las centrales de hormigón preparado.

A continuación, os dejo un vídeo de IECA sobre la construcción de un pavimento bicapa de hormigón con terminación de árido visto que se ejecutó en un tramo de la autovía C-17, en Barcelona. Espero que os guste.

Referencia:

AGUADO, A.; CARRASCÓN, S.; CAVALARO, S.; PUIG, I.; SENÉS, C. (2010). Manual para el proyecto, construcción y gestión de pavimentos bicapa de hormigón. Universitat Politècnica de Catalunya, 204 pp.

Procedimiento para la construcción y reparación de pavimentos de hormigón

losaLa construcción y la reparación de losas de hormigón usadas como pavimento es un reto que requiere el uso de técnicas constructivas. Uno de los problemas principales radica en la solución de las juntas para conseguir economía y durabilidad en la ejecución de esta unidad de obra. Os presento a continuación una solución de la empresa FAROBEL que resuelve el problema con losas más pequeñas y de menor espesor (entre 3,30 y 0,80 m) para reducir las tensiones por flexión debidas a las cargas y gradientes térmicos.  La reparación de los firmes actuales de asfalto se hace con pequeñas losas de 0,8*1,1*0,08 con juntas JRI+ y la reparación de los firmes de hormigón con una aplicación de la junta JRI+ para pavimentos de hormigón ya existentes. Para ello se utiliza una junta machihembrada tipo JRI+ que apoya los bordes y permite giros entre dichos bordes de losas. A esa junta se le dota de gomas impermeables, resultando un pavimento con transferencia de cargas e impermeabilidad permanentes.

jri+detalles

Las ventajas que presenta esta tecnología se pueden resumir en los siguientes puntos:

1.- Elimina las capas de base

2.- Elimina los pasadores

3.- Elimina el corte y el sellado

4.- Disminuye el espesor de las losas de hormigón

5.- Disminuye el mantenimiento

6.- Puede ponerse la capa asfáltica de rodadura sin erosionarse en la zona de la fisura.

7.- Aumenta la vida útil del pavimento

sistemafuerzasJri+

Os dejo un vídeo sobre la instalación:

También os dejo un artículo de José Ramón Vázquez sobre el tema.

Pincha aquí para descargar

 

 

Juntas en pavimentos de hormigón

http://www.duravia.com.pe

Los pavimentos de hormigón más habitualmente empleados son los de hormigón en masa con juntas y, en menor proporción, los de hormigón armado con juntas (en los que el armado puede realizarse tanto mediante armadura convencional como con fibras metálicas).  En función de su posición con respecto al avance del hormigonado, las juntas en un pavimento de hormigón se pueden clasificar en juntas longitudinales, paralelas a dicho avance, y en juntas transversales, perpendiculares a él.  Os recomiendo la Guía Técnica de IECA sobre el diseño y la ejecución de juntas en pavimentos y soleras de hormigón.

También recomiendo la videoconferencia sobre el diseño y la ejecución de juntas en pavimentos de hormigón, cuyo ponente es César Bartolomé, director del Área de Innovación de IECA. Espero que os guste.

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.