Preguntas frecuentes sobre la dosificación de hormigones

¿Qué es la dosificación del hormigón y por qué es tan importante?

La dosificación del hormigón consiste en determinar las proporciones exactas de sus componentes (cemento, agua, áridos y aditivos) para obtener una mezcla óptima. El objetivo es que el hormigón resultante posea las características idóneas de durabilidad, resistencia, compacidad y consistencia para la obra en cuestión. Una dosificación adecuada es fundamental para garantizar la resistencia y la durabilidad de las estructuras. Si no se realiza adecuadamente, la mezcla puede perder homogeneidad y los componentes pueden segregarse, lo que comprometería las propiedades del hormigón endurecido.

¿Cuáles son los factores clave que hay que considerar antes de dosificar el hormigón?

Antes de dosificar el hormigón, es importante considerar varios factores para garantizar que la mezcla sea adecuada para la aplicación deseada. Estos incluyen:

  • Resistencia deseada del hormigón: es la propiedad mecánica principal que se busca.
  • Condiciones ambientales: la exposición a temperaturas extremas, ciclos de congelación-deshielo o ambientes agresivos (como el agua de mar o los sulfatos) influye en la durabilidad.
  • Equipos de fabricación y compactación: la elección entre métodos manuales o mecánicos para la mezcla y la compactación incide en la trabajabilidad y en la necesidad de aditivos.
  • Granulometría y la calidad de los áridos: el tamaño máximo, la forma (rodado o machacado) y la distribución granulométrica son esenciales para la compacidad y la trabajabilidad.
  • Dimensiones de la sección y disposición de las armaduras: influyen en el tamaño nominal máximo del árido y en la trabajabilidad necesaria para garantizar un buen llenado y una correcta compactación.
  • Tipo de cemento y el uso de aditivos: determinan las propiedades de fraguado, de endurecimiento y las características especiales del hormigón.

¿Cuáles son los principales métodos de dosificación del hormigón?

Existen varios métodos, cada uno adecuado para diferentes situaciones y niveles de precisión:

  • Dosificación en volumen: es el método más antiguo y sencillo. Se utiliza principalmente en obras pequeñas y consiste en determinar las cantidades mediante tablas de proporciones para obtener un metro cúbico de hormigón.
  • Métodos basados en el contenido de cemento: incluyen el método de Fuller y la fórmula de Bolomey. Estos se centran en la cantidad de cemento por metro cúbico y en la granulometría de los áridos para lograr una buena densidad y trabajabilidad, con el objetivo de utilizar menos cemento.
  • Métodos basados en la resistencia a la compresión: como el método A.C.I. y el método De la Peña. Estos parten de la resistencia deseada del hormigón y consideran la cantidad de agua, el tamaño y el tipo de árido, así como la consistencia, para determinar las proporciones. Se utilizan ampliamente en obras estructurales.
  • Métodos racionales: como el método Faury, que se basa en principios granulométricos y define una curva granulométrica ideal para garantizar una granulometría total adecuada, incluida la del cemento. Es más flexible y preciso, pero requiere cálculos más complejos.
  • Métodos prácticos/experimentales: como el método de Valette y los hormigones de prueba, que implican la realización de mezclas experimentales en el laboratorio o en la obra para verificar y ajustar las proporciones en función de las propiedades del hormigón fresco y endurecido.

¿Cómo influyen la relación agua/cemento y la cantidad de cemento en la dosificación?

La relación agua/cemento (a/c) es un factor crítico para la resistencia y la durabilidad del hormigón. A menor relación a/c, mayor resistencia y durabilidad, y menor coste si la resistencia es fija. La cantidad de cemento, junto con la relación a/c, se selecciona para cumplir los requisitos de resistencia y durabilidad. El Código Estructural establece límites para el contenido de cemento: no puede ser inferior a 200, 250 y 275 kg/m³ para hormigón en masa, armado o pretensado, respectivamente. La cantidad máxima de cemento por metro cúbico de hormigón suele ser de 500 kg, aunque este límite puede superarse con la autorización de la dirección de obra. Una relación agua/cemento adecuada y un contenido de cemento adecuado minimizan el riesgo de segregación y aseguran la cohesión de la mezcla.

¿Por qué son importantes los ensayos experimentales con hormigón dosificado y qué se evalúa?

El cálculo matemático y teórico de las proporciones del hormigón no exime de la responsabilidad de comprobar experimentalmente la composición obtenida. En la práctica, múltiples factores pueden influir en las propiedades del hormigón. Los ensayos experimentales son cruciales para:

  • Verificación de la docilidad (trabajabilidad): se mide mediante el método del asentamiento del cono de Abrams (UNE EN 12350-2), a fin de garantizar que el hormigón pueda moldearse y compactarse fácilmente en obra.
  • Comprobación de la resistencia: se verifica mediante ensayos de resistencia a la compresión con probetas fabricadas y curadas según las normas específicas (UNE-EN 12390-2).
  • Ajustes y correcciones: Las pruebas permiten ajustar la dosis de agua para lograr el asentamiento requerido y, si el rendimiento difiere significativamente del cálculo teórico (más del ±3 %), se corrigen las proporciones de los áridos. También se pueden ajustar las dosis de cemento si la resistencia obtenida supera la necesaria. La toma de muestras para estos ensayos se realiza en el punto de vertido, a la salida del elemento de transporte, entre un cuarto y un tercio de la descarga, y deben estar presentes el proveedor del hormigón y el constructor, con un acta levantada por el laboratorio.

¿Cómo influye la dosificación del hormigón en la segregación de sus componentes?

La segregación es la pérdida de homogeneidad de la mezcla de hormigón y está directamente relacionada con una dosificación incorrecta. Un hormigón mal dosificado puede presentar dos tipos principales de segregación:

  • Por exceso de agua: si la cantidad de agua es excesiva, el mortero puede separarse de los áridos y los áridos más gruesos tienden a depositarse en el fondo.
  • Por escasez de agua y exceso de finos (hormigón muy seco): en este caso, los áridos más gruesos se separan y se depositan con mayor facilidad que las partículas más finas. Para evitar la segregación, es fundamental realizar una dosificación que asegure la cohesión de la mezcla. Las mezclas más propensas a la segregación son las que contienen mucha arena, las ásperas o poco dóciles y las extremadamente secas o fluidas. Un aumento adecuado de la cantidad de agua suele mejorar la cohesión y eliminar la segregación en mezclas secas.

¿Cuáles son las limitaciones y correcciones más habituales en la dosificación del hormigón en la práctica?

A pesar de los métodos teóricos, la dosificación del hormigón en la práctica presenta limitaciones y requiere correcciones.

  • Limitaciones normativas: el Código Estructural establece rangos mínimos y máximos para el contenido de cemento y la relación agua/cemento con el fin de garantizar la durabilidad y la resistencia del hormigón en función del tipo de estructura y de la exposición.
  • Ajustes por humedad de los áridos: los áridos de la obra suelen tener un grado de humedad distinto del de la condición saturada y del de la superficie seca considerados en la dosificación inicial. Esta humedad afecta tanto la cantidad de agua efectiva en la mezcla como el peso real de los áridos. Por tanto, se calcula la humedad libre y se ajustan, en consecuencia, la dosis de agua y el peso de los áridos. Si la dosificación se mide en volumen, también debe considerarse el esponjamiento de la arena.
  • Modificación por rendimiento: se comprueba si el volumen de hormigón producido en obra coincide con el volumen teórico calculado. Si hay diferencias (generalmente, superiores al ±3 %), se ajustan las proporciones de los áridos para mantener la dosis de cemento y la relación agua/cemento.
  • Corrección por variaciones de la granulometría: si la arena suministrada contiene proporciones de grava no previstas o si la granulometría general de los áridos varía, es necesario modificar las proporciones de arena y grava para mantener la trabajabilidad y la compactación deseadas y asegurar el cumplimiento de las bandas granulométricas óptimas.

¿Quiénes son los «participantes» clave en la fabricación de un buen hormigón?

Existe una metáfora ingeniosa para describir los roles esenciales en este proceso:

  • Un sabio para el agua: ya que es fundamental para la trabajabilidad, la resistencia y la durabilidad, su cantidad debe calcularse y controlarse cuidadosamente.
  • Un avaro con el cemento: destaca la necesidad de ser eficiente en su uso, el componente más costoso, sin comprometer las propiedades deseadas del hormigón. Esto implica un uso óptimo que cumpla con los requisitos mínimos de resistencia y durabilidad.
  • Un dadivoso para los áridos: sugiere generosidad al seleccionar y combinar los áridos, buscando la mejor granulometría y calidad posibles para lograr la máxima compacidad y una trabajabilidad adecuada a las condiciones de la obra.
  • Y para revolverlo… ¡Un genio de la ingeniería! Este último participante subraya el papel fundamental del ingeniero, que con su experiencia y conocimiento, y una pizca de audacia, integra todos los componentes y ajusta el proceso para asegurar el éxito final del hormigón. Esto implica supervisión constante, capacidad para realizar correcciones en obra y garantizar el cumplimiento de todas las especificaciones.

Os dejo un audio de resumen de este tema:

Os dejo varios vídeos, que espero, os sean útiles:

También os dejo unos documentos sobre este tema:

Pincha aquí para descargar

Pincha aquí para descargar

Curso:

Curso de fabricación y puesta en obra del hormigón.

Glosario de términos clave

  • Dosificación del hormigón: Proceso de determinar las proporciones exactas de los componentes (cemento, agua, áridos, aditivos) para obtener una mezcla de hormigón con las características deseadas (resistencia, durabilidad, trabajabilidad, etc.).
  • Hormigón en masa: Hormigón sin armadura de acero.
  • Hormigón armado: Hormigón que contiene una armadura de acero para mejorar su resistencia a la tracción.
  • Hormigón pretensado: Hormigón en el que se inducen esfuerzos de compresión antes de la aplicación de las cargas de servicio, generalmente mediante tendones de acero.
  • Resistencia característica: Valor de resistencia a la compresión del hormigón por debajo del cual solo se espera un porcentaje especificado de resultados (p. ej., 5 %). Es la resistencia mínima garantizada por la normativa.
  • Resistencia media de dosificación: Resistencia promedio objetivo para la mezcla de hormigón, calculada para asegurar que la resistencia característica se cumpla en obra, considerando la variabilidad del proceso.
  • Áridos: Materiales granulares (arena, grava) que forman el esqueleto del hormigón.
  • Granulometría: Distribución por tamaños de las partículas de un árido. Una granulometría adecuada es crucial para la trabajabilidad y compacidad del hormigón.
  • Tamaño máximo nominal del árido: Dimensión máxima de las partículas del árido grueso utilizada en una mezcla de hormigón.
  • Consistencia del hormigón: Medida de la fluidez o rigidez del hormigón fresco, generalmente determinada mediante el ensayo de asentamiento del cono de Abrams.
  • Trabajabilidad: Propiedad del hormigón fresco que describe la facilidad con la que puede ser mezclado, transportado, colocado, compactado y acabado sin segregación.
  • Asentamiento del cono de Abrams: Ensayo estandarizado para medir la consistencia del hormigón fresco.
  • Relación agua/cemento: Proporción en peso de agua libre respecto al cemento en la mezcla de hormigón. Es el factor más influyente en la resistencia y la durabilidad del hormigón.
  • Aditivos: Sustancias añadidas al hormigón en pequeñas cantidades para modificar sus propiedades (p. ej., plastificantes, incorporadores de aire, retardantes).
  • Segregación: Separación de los componentes del hormigón fresco, lo que da lugar a una distribución no uniforme de los materiales y a propiedades inferiores.
  • Gessner (parábola de Gessner): Curva granulométrica teórica que representa una distribución de tamaños de áridos que maximiza la compacidad y la docilidad de la mezcla.
  • Bolomey (fórmula de Bolomey): Método de dosificación basado en el contenido de cemento, que busca una mezcla económica y resistente, perfeccionando el método de Fuller.
  • Método A.C.I. (American Concrete Institute): Método empírico de dosificación ampliamente utilizado, basado en tablas y experiencia para determinar las proporciones de la mezcla.
  • Método de la Peña: Método de dosificación basado en la resistencia a la compresión, aconsejado para hormigones estructurales con condiciones de ejecución controlables.
  • Método de Fuller: Método de dosificación antiguo basado en el contenido de cemento y una granulometría continua.
  • Método Faury: Método de dosificación racional que se fundamenta en principios granulométricos y en el concepto de «curva granulométrica ideal», que incluye el efecto de pared.
  • Método de Valette: Método experimental de dosificación que emplea técnicas de laboratorio para determinar las proporciones óptimas de los materiales.
  • Humedad libre: Agua contenida en los áridos por encima de la cantidad necesaria para su estado saturado con superficie seca, que contribuye al agua de amasado de la mezcla.
  • Agua de absorción: Agua que los áridos pueden absorber hasta alcanzar su estado saturado superficialmente seco (sss).
  • Rendimiento del hormigón: Volumen real de hormigón producido por una amasada o por unidad de cemento, comparado con el volumen teórico.
  • Efecto de pared: Fenómeno cuantificado por Faury que describe la influencia de las superficies rígidas (moldajes y armaduras) en la densidad y distribución granular del hormigón adyacente.
  • Módulo de finura: Indicador de la finura o grueso de un árido, especialmente arena, utilizado en algunos métodos de dosificación.
  • Huso granulométrico: Rango de curvas granulométricas consideradas aceptables para un determinado tipo de hormigón y de aplicación.
  • Densidad aparente (de áridos): Masa de un volumen de árido, incluyendo los huecos entre las partículas.
  • Densidad real (de áridos o cemento): Masa de un volumen de material sólido, excluyendo los huecos.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dosificación de los áridos en la fabricación del hormigón

La dosificación de los áridos es un proceso más complejo que la dosificación del cemento, pues debe considerarse el agua contenida en estos componentes. Esta agua puede estar presente en la superficie de los áridos, entre sus partículas e incluso en su interior, como ocurre con los áridos ligeros. Para lograr dosificaciones precisas, es fundamental mantener un conocimiento constante de las cantidades variables de agua. La dosificación de áridos puede realizarse de manera ponderal o volumétrica.

Dosificación por volumen

Un dosificador de áridos por volumen consta de una cinta transportadora, ubicada debajo de la tolva de almacenamiento, que se mueve a velocidad constante, y de un registro vertical que regula la altura del material extraído sobre la banda (Figuras 1 y 2). El volumen distribuido es proporcional al tiempo de descarga, el cual se controla mediante temporizadores.

Figura 1. Dosificador volumétrico de áridos

Este procedimiento no se ve afectado por la humedad de los materiales, lo que lo hace especialmente adecuado para áridos ligeros, cuya densidad puede variar significativamente según su contenido de agua. Sin embargo, el peso del material extraído puede verse influido por el grado de compactación del material sobre el dosificador, es decir, por la altura de carga en las tolvas de almacenamiento.

Figura 2. Detalle del dosificador volumétrico de áridos

La dosificación en volumen es más complicada que la en peso. En las instalaciones muy pequeñas, donde se realiza la dosificación directamente en el skip o en un dispositivo similar, los áridos deben verterse hasta alcanzar los niveles de referencia preestablecidos. Este procedimiento repetitivo no solo consume mucho tiempo, sino que también aumenta la probabilidad de errores.

Cuando la alimentación se realiza mediante una cinta transportadora, el control de los volúmenes transportados resulta más sencillo. Conociendo el ancho de la cinta, solo es necesario instalar un gálibo sobre ella, que debe operar a una velocidad constante. Conociendo esta velocidad, se puede determinar el tiempo de funcionamiento necesario para alimentar una amasada. Los dosificadores volumétricos se instalan generalmente justo debajo del silo o de la tolva. El material a dosificar se carga directamente en una pequeña cinta llamada extractora.

Este procedimiento presenta varias ventajas, como un bajo coste, una gran simplicidad, un bajo mantenimiento y un reducido espacio de ocupación. Sin embargo, también presenta inconvenientes, como la imprecisión causada por los esponjamientos variables de las arenas, la irregularidad en los caudales sobre la cinta y las posibles inconsistencias en la caída del material a través de las trampillas. Según los fabricantes, los errores de medida entre las cantidades programadas y las obtenidas son inferiores a ±2 %.

Dosificación por peso

La dosificación ponderal se ha convertido en el método preferido tanto para cementos como para áridos, gracias a su mayor precisión y facilidad de implementación frente a la dosificación volumétrica. Existen varias opciones para realizar este proceso cuando las tolvas están en línea. Se pueden utilizar básculas individuales que alimentan el material mediante una cinta transportadora (Figura 3) o básculas móviles que se trasladan entre diferentes tolvas (Figura 4). Otra alternativa es una báscula con cinta extractora que utiliza una única tolva pesadora, larga y estrecha, que se vacía al activar una cinta transportadora ubicada en el fondo (Figura 5). Para los compartimentos correspondientes, las compuertas de sector son las más comúnmente utilizadas y pueden accionarse de forma manual, eléctrica, neumática o hidráulica. En algunos casos, las compuertas se reemplazan por alimentadores electromagnéticos o de cinta transportadora.

Básculas independientes: Se trata de un pesaje simultáneo, en el que cada componente o árido dispone de su propia báscula y todas ellas descargan el material en una cinta transportadora que lo lleva al skip de la mezcladora. Este método proporciona alta precisión y alta productividad.

Figura 3. Básculas independientes bajo tolvas en línea

Báscula móvil: Se trata de un procedimiento más lento que el de las básculas independientes. La báscula se desplaza de una tolva a la siguiente. Se realiza un pesaje acumulativo o por adición, en el que los componentes se pesan secuencialmente en la misma báscula. Cuando la aguja del dial alcanza la cantidad requerida del primer árido, se cierra su compuerta y se abre la del siguiente, lo que permite ahorrar espacio y reducir los costes de instalación e inversión. Estos sistemas suelen ser menos precisos que las básculas independientes, especialmente cuando se pesa el cemento al final del proceso.

Figura 4. Báscula móvil bajo tolvas en línea

Báscula con cinta pesadora: También existen sistemas de pesaje continuo para áridos, como las cintas pesadoras, que actúan como medidores de caudal. Una cinta pesadora consta de una báscula que mide el peso de un elemento de la cinta (por ejemplo, la reacción de un rodillo), un indicador de esfera y un totalizador, generalmente digital. Este totalizador se acciona mediante un motor cuya tensión de alimentación depende de la velocidad de la cinta y de la carga indicada por el dispositivo de pesaje. Estos sistemas, también conocidos como básculas o rodillos integradores, permiten reducir la altura de las plantas de producción, aunque su precisión varía entre el 0,5 % y el 1 %. Este tipo de báscula permite una dosificación más rápida y es especialmente útil en instalaciones de prefabricados, donde se manejan diversos tipos de áridos, así como en centrales de dosificación para hormigoneras sobre camión.

Figura 5. Báscula con cinta pesadora

Cuando las tolvas verticales descargan sobre una misma báscula, puede haber un sistema de pesaje aditivo, tal como se ha descrito con la báscula móvil y con sistemas de pesaje sustractivo. En este último caso, se llena la báscula y se determina el peso total; luego, se abre y se cierra la compuerta hasta que la aguja marque la diferencia deseada. Este método simplifica la instalación, ya que no requiere una tolva superior ni la dosificación mediante compuertas.

La báscula más aceptada es la de suspensión en cuatro puntos, que evita errores de peso causados por el desequilibrio de la carga en el recipiente. Aunque la báscula romana de cursor es económica y precisa, la balanza de resorte con índice se ha vuelto más común para áridos y cemento, ya que permite realizar múltiples pesadas aditivas y llevar a cabo un control adecuado en vacío, lo cual es especialmente importante en el caso del cemento. Además, algunos fabricantes utilizan básculas medidoras de presión, que miden el peso eléctricamente en lugar de recurrir a básculas mecánicas.

En las instalaciones con skip pesador, los áridos no se descargan en una tolva pesadora fija, sino que se descargan directamente en la cubeta del skip de la mezcladora. Este sistema se emplea principalmente para reducir la altura del equipo de pesaje y eliminar o minimizar la necesidad de una fosa en el muro de almacenamiento. El principal inconveniente es que no se puede comenzar a dosificar los áridos hasta que el skip esté apoyado en la báscula, lo que generalmente afecta al ciclo de la hormigonera y reduce el número de amasadas por hora, disminuyendo así la producción.

Figura 6. Skip pesador de áridos

Os dejo un vídeo ilustrativo sobre este tema.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación directa por tamaños. El cribado

https://dasenmining.com/es/product/vibrating-screen/

El cribado se refiere a la clasificación por tamaño de los fragmentos de un material, generalmente aquellos que tienen un tamaño superior a 2 mm. Estos fragmentos presentan diversas dimensiones y formas. Se someten a una superficie con aberturas, conocida como superficie de cribado, que permite el paso de los fragmentos más pequeños que la apertura (llamados pasantes) y retiene o rechaza aquellos de un tamaño mayor (rechazo).

El cribado se utiliza para separar los fragmentos más gruesos, ya sea para eliminarlos o para someterlos a un proceso de fragmentación adicional, en comparación con los fragmentos que tienen el tamaño requerido. Además, elimina los elementos más finos, como las arcillas o los elementos coloidales (este proceso se conoce como deslamado).

Los métodos de cribado más comunes incluyen el uso de mallas de alambre metálico y chapas perforadas con agujeros circulares. Las máquinas más empleadas son el trómel o criba rotativa y el tamiz o criba plana. Además, el cribado se puede realizar en seco o en húmedo.

En el caso del cribado en seco, el material se somete al cribado tal como se obtiene de la cantera. Sin embargo, presenta la desventaja de que, cuando contiene cierta humedad, los agujeros se obstruyen fácilmente, especialmente en los tamaños más pequeños, como en el caso de la arena. El secado del material resulta costoso desde el punto de vista económico. Por otro lado, el cribado en húmedo evita la obstrucción de los agujeros y, al mismo tiempo, permite el lavado de los áridos, lo cual resulta más ventajoso, aunque implica un mayor costo de instalación y la necesidad de un proceso adicional para la recuperación de los finos.

Precribado. https://www.nubasm.com/articulo-tecnico/etapas-del-cribado-i/

Definición de términos:

  • Rechazo: Porcentaje de partículas que quedan retenidas en una criba y tienen un tamaño superior al valor de clasificación establecido.
  • Pasante: Porcentaje de partículas que atraviesan una criba y tienen un tamaño inferior al valor de clasificación establecido.
  • Semitamaño: Porcentaje de alimentación a una criba compuesto por partículas con un tamaño inferior a la mitad del valor de clasificación.
  • Desclasificados: Porcentaje o masa de partículas finas que no pasan a través de la criba y se mezclan con la fracción más gruesa (rechazo).
  • Todo-Uno: Es la mezcla completa antes de su clasificación.

Terminología empleada en la clasificación por tamaños:

  • Escalpado: Operación que consiste en eliminar fragmentos grandes que pueden representar un peligro u obstáculo para las etapas siguientes del proceso.
  • Precribado: Fracción fina con el tamaño adecuado que se evita que pase a la siguiente etapa de trituración o machaqueo.
  • Calibrado: Clasificación para calibres superiores a 100 mm. Se utilizan parrillas fijas o dinámicas.
  • Cribado: Clasificación de tamaños entre 150 μm y 100 mm. Se emplean trómeles, cribas de sacudidas o cribas vibrantes.
  • Tamizado: Clasificación de tamaños entre 40 μm y 150 μm. Se usan cribas rotativas o tamices vibrantes.
  • Recribado: Operación adicional de clasificación que tiene como objetivo mejorar la eliminación de la fracción fina, en particular para la eliminación de impurezas.
  • Agotado: Operación que consiste en eliminar el exceso de líquido (generalmente agua) de las mezclas sólido-líquido que se manejan en procesos húmedos.

Os dejo varios vídeos sobre el cribado de áridos:

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación. Tecnología, diseño y aplicación. Ed. Rocas y Minerales, Madrid, 360 pp.

MARFANY, A. (2004). Tecnología de canteras y graveras. Fueyo Editores, Madrid, 525 pp.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos — ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Esquema de circulación y flujo de una instalación de tratamiento de áridos

El esquema de circulación es un dibujo que representa los movimientos de los áridos durante los diferentes procesos de trituración, clasificación y almacenamiento, incluyendo los retornos y reciclajes. Estos esquemas se elaboran antes de diseñar la instalación y deben analizarse detalladamente, considerando todas las opciones necesarias para lograr los resultados deseados y sus variantes. Requieren varias iteraciones y ajustes para encontrar la solución más adecuada al problema.

En el esquema, es importante incluir números que indiquen el tamaño de la entrada y la configuración de apertura de salida asignados a cada trituradora. En el caso de las cribas, además de su identificación, deben aparecer las aperturas de malla correspondientes a cada nivel de cribado. Asimismo, en los alimentadores, es necesario indicar su identificación junto con el tamaño máximo de alimentación permitido.

Las líneas que representan las circulaciones deben incluir el caudal horario y el tamaño del árido, indicando sus límites inferior y superior en milímetros. El caudal debe expresarse en toneladas por hora.

Es importante tener en cuenta que las posiciones relativas de las máquinas en el esquema de circulación no reflejan necesariamente las que se adoptarán en el proyecto final. Los acopios representados son simbólicos y podrán ser realizados en forma de montón, depósito de fábrica o tolvas metálicas, pudiendo ser abiertos, cubiertos o cerrados.

El esquema definitivo, que se adopta como solución, se obtiene mediante un proceso iterativo que comienza con una hipótesis de maquinaria con la capacidad adecuada. Se efectúan modificaciones en las variables hasta lograr la proporción de áridos deseada dentro de una tolerancia establecida. Las variables incluyen:

  • Ajuste de la apertura de salida de los trituradores.
  • Control de la abertura de las parrillas de los molinos.
  • Determinación del porcentaje de material pretriturado y clasificado que se someterá a trituración secundaria.
  • Selección del tipo de máquina utilizada en la trituración secundaria.
  • Evaluación de la opción de reciclar el material empleando la misma máquina, ya sea con o sin clasificación previa.
  • Consideración de la posibilidad de efectuar trituraciones terciarias en una o varias fracciones del material clasificado.

A continuación recojo un problema resuelto donde se puede apreciar las características básicas de un ejemplo de circulación y flujos para una instalación de tratamiento de áridos. Espero que sea de vuestro interés.

Pincha aquí para descargar

Referencias:

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nomograma para el cálculo de la piedra de una voladura a cielo abierto según Ash

En un artículo anterior, presentamos el método de Langefors y Kihlström para voladuras en banco de pequeño diámetro. En él se incluía una fórmula para calcular el valor de la piedra, también conocido como valor de mínima resistencia o burden. Sin embargo, existen otros métodos para calcular este valor. En otro artículo también resolvimos este problema, incluyendo cinco métodos y dos nomogramas originales para su cálculo.

Aquí vamos a presentar un nuevo nomograma basado en la metodología de Ash (1963) y la resolución de un problema. Esta metodología es popular debido a su simplicidad, pero solo es apropiada para el diseño de voladuras al aire libre.

Agradezco sinceramente la colaboración de los profesores Pedro Martínez Pagán, Daniel Boulet, y Leif Roschier en la elaboración de este nomograma. A continuación, comparto el nomograma junto con la solución correspondiente del problema. Espero que esta información sea de utilidad e interés para mis lectores.

Pincha aquí para descargar

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Precribado: Parrillas de barras o cribas de barrotes

Figura 1. Parrillas de barras. https://www.mekaglobal.com/es/productos/trituradores-y-cribas/cribas/criba-de-parrilla

Las parrillas de barras, cribas de barrotes o superficies formadas son utilizadas en cribados en seco de material grueso o muy grueso antes de la trituración primaria, con tamaños superiores a 150 mm (Figura 1). Algunas de las aplicaciones más comunes de este tipo de cribado incluyen:

      1. Realizar un escalpado, es decir, prevenir la entrada de material de gran tamaño a la trituradora primaria o a un sistema de transporte de material, como puede ser una cinta transportadora. Las partículas demasiado grandes podrían atascar las trituradoras.
      2. Eliminar de la alimentación a la trituradora primaria de fracciones inferiores, ya sea para evitar su trituración o para producir un producto específico de cantera.

Estas parrillas son de construcción robusta, compuestas por barras, perfiles o carriles de vía en posición invertida, hechos de acero. Están dispuestos en paralelo y separados con precisión para cumplir con la clasificación deseada. Para trabajos duros y de alta abrasividad, se emplea acero al manganeso o aleado con cromo. La longitud máxima de las barras se alinea con la dirección del flujo del material, y suele tener una sección trapezoidal invertida para prevenir obstrucciones. La sección de las barras se va estrechando hacia el final de la criba, lo que crea una divergencia hacia la salida que impide atascos (ver Figura 2).

Figura 2. Criba de barrotes longitudinales. Detalle de la sección transversal y planta.

Las parrillas de barras fijas tienen una inclinación que promueve el avance del material, que va desde 20º hasta 45º. Esto aumenta el caudal de alimentación, pero se reduce su eficiencia. La separación entre las barras puede oscilar desde 25 mm hasta 250 mm, y una capacidad proporcional al área de 0,5-2,5 t/h por m2 de superficie útil por mm de abertura.

Una variante son los precribadores de barras móviles. En este caso las barras están fijas solo en un extremo, por lo que el golpeteo del material origina cierta vibración que mejora su limpieza. Están formados por dos juegos de barras longitudinales alternadas. Se emplean para la alimentación de machacadoras y molinos de tamaño mediano a pequeño.

Figura 3. Cribas de barras móviles. https://www.eralki.com/maquinas/cribas-vibrantes/

La otra opción son los precribadores vibrantes. Las barras se montan en una estructura vibrante que cuenta con dos o más series de superficies cribadoras formadas por barras. Estas pueden estar situadas una encima de la otra como en una criba normal (scalper) o dispuestas en varios escalones en cascada (grizzly). Su función principal es evitar la entrada de materiales reducidos y arcillosos antes de llegar a la trituradora. En este caso, la separación entre barras varía de 50 mm a 150 mm, y las dimensiones de las bandejas van de 1.200 x 2.000 mm a 2.000 x 6.000 mm. Las potencias van desde 11 kW hasta 30 kW. El scalper está diseñado para soportar impactos de bloques más grandes que el grizzly.

Figura 4. Criba vibrante de barras tipo grizzly. https://tallereslosan.com/cribas/cribas-vibrantes-barras-grizzlyz/

Os he grabado un vídeo explicativo sobre este tema, que espero os sea de interés.

A continuación os dejo un vídeo de una criba scalper. Espero que os sea útil.

Referencias:

ANDREA, E. (2014). Tecnología metalúrgica. Universidad de Cantabria. https://ocw.unican.es/course/view.php?id=261

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ-PAGÁN, P.; PERALES, A. (2020). Tecnología metalúrgica, 2ª edición. Universidad Politécnica de Cartagena. https://ocw.bib.upct.es/course/view.php?id=178

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Métodos de cálculo de la piedra en una voladura en banco de una cantera

Figura 1. Esquema de la piedra V efectiva, también llamada burden o valor de mínima resistencia

En un artículo anterior, presentamos el método de Langefors y Kihlström para voladuras en banco de pequeño diámetro. En él se incluía una fórmula para calcular el valor de la piedra, también conocido como valor de mínima resistencia o burden. Sin embargo, existen otros métodos para calcular este valor.

El problema que se presenta a continuación incluye cinco métodos y dos nomogramas originales para su cálculo. Al comparar los resultados, es evidente que son bastante similares. No obstante, es posible que la piedra calculada tenga un margen de error que puede corregirse en las siguientes voladuras.

Agradezco sinceramente la colaboración de los profesores Pedro Martínez Pagán y Trevor Blight en la elaboración de los nomogramas. A continuación, comparto estos nomogramas junto con la solución correspondiente del problema. Espero que esta información sea de utilidad e interés para mis lectores.

 

Pincha aquí para descargar

Referencias:

LANGEFORS, U.; KIHLSTRÖM, B. (1963). Técnica moderna de voladuras de rocas. Editorial URMO, Bilbao, 425 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Teoría probabilista del cribado

Figura 1. Relación entre los parámetros de una criba.

Sea una partícula esférica de diámetro d, la cual cae perpendicularmente a la superficie de cribado. La probabilidad P que pase a través de la malla, sin considerar los roces o rebotes en los hilos de la malla, se puede expresar como la relación entre el área en la que la partícula puede pasar libremente y el área total de la malla, incluyendo la parte proporcional del hilo.

Siendo a la abertura cuadrada de la criba y b el diámetro de los alambres, tal y como se puede ver en la Figura 1, la expresión sería la siguiente:

En la expresión anterior, el primer término de la expresión se refiere a la proporción del área de paso efectiva, que depende de la relación entre el tamaño de la partícula y la abertura de la malla. El segundo término representa la proporción de la superficie de cribado que está libre de obstáculos, permitiendo el paso de la partícula.

La probabilidad de ser cribado para un grano de tamaño d<a, cuando se dan un número n de rebotes encima de la criba será:

Prob (1)                               Probabilidad de pasar en un salto

Prob (0) = 1 – Prob (1)    Probabilidad de no pasar en un salto

Por tanto, la probabilidad de no pasar en n rebotes será:

Como la suma de la probabilidad de paso más la de no paso es igual a uno, tenemos por diferencia que la probabilidad de paso de una partícula de tamaño d<a, para el total de n rebotes encima de la criba, se obtiene de la siguiente expresión general:

Y, por tanto,

Esta expresión no considera la interacción entre las partículas ni otros factores presentes durante el proceso de cribado, sin embargo, permite deducir propiedades esenciales en el funcionamiento de una criba.

A continuación, comparto un par de problemas resueltos que espero os resulten útiles. Se puede ver que las partículas con un tamaño menor a la mitad de la malla de la criba pasan inmediatamente al caer y prácticamente no afectan el cálculo de su capacidad siempre que su proporción sea baja. Por tanto, en los cálculos de la capacidad de una criba, se consideran los tamaños comprendidos entre 0,5 y 1 vez el tamaño de la malla. Se ha determinado que los granos con tamaños entre 0,5 y 1,5 veces el tamaño de la malla son los que más intervienen en el cribado, causando cierta obstrucción. Estos granos se conocen como tamaños críticos. En general, la criba directa, tanto en seco como en húmedo, se limita a tamaños de hasta 0,5 mm, a excepción de algunos casos específicos que pueden llegar hasta 0,1 o 0,2 mm.

Pincha aquí para descargar

Referencias:

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

WILLS, B.A.; NAPIER-MUNN, T. (2006). Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 7th edition.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trómeles: cribas dinámicas y cilindros lavadores

Figura 1. Trómel lavador de áridos. https://minerales-maquinaria.com/tromer-lavador-de-aridos-y-minerales/

Las cribadoras tipo trómel son tambores giratorios constituidos por chapas perforadas curvadas o paneles de malla ensamblados en un cilindro que gira alrededor de su eje central o a través de un tren de neumáticos, de entre 4 y 24 ruedas, la mitad de las cuales son motrices. Trabajan tanto en vía seca como húmeda, aunque es común que sean trómeles lavadores.

La rotación favorece la disgregación del material, desempeñando así un papel de lavado. El rechazo se transporta por el tambor hasta que se descargan por el extremo del equipo. Para facilitar el movimiento del material en su interior, están inclinados de 5º a 7º sobre la horizontal y se encuentran equipados con deflectores internos que empujan y voltean el material. La limpieza de los orificios se realiza facilitando la caída del grano atascado a su paso por la parte superior de su recorrido, donde la gravedad hace que las partículas caigan con la ayuda de las vibraciones que acompañan el movimiento.

Los tambores giran entre un 30 % y un 45 % de su velocidad crítica, evitando el centrifugado, siendo la velocidad periférica de 40 a 50 r.p.m. La capacidad de transporte se puede estimar como 32·Di2 (m³/h), donde Di es el diámetro interno del tambor expresado en metros. Estas cribas suministran el material clasificado por tamaños, empezando por la fracción más fina y terminando con la más gruesa. Es por ello que los diámetros de las cribas van de menor a mayor (Figura 2). Los finos se descargan a través de las paredes del cilindro.

Figura 2. Trómel de cribado. https://en.wikipedia.org/wiki/Trommel_screen

Las dimensiones habituales del diámetro interno de estos trómeles varían de 1,5 a 3 m, con longitudes aproximadas de tres veces este diámetro y potencias entre 22 y 130 kW. Sus capacidades de lavado oscilan entre 50 y 450 t/h cuando la densidad aparente del material es de 1,6 t/m3, admitiendo tamaños máximos a la entrada de 150 a 300 mm.

Los trómeles lavadores reciben agua y áridos por la boca más alta, permitiendo el volteo, una atrición que libera las tierras y arcilla que acompañan a los áridos, saliendo limpios por la boca opuesta. Pueden ser de dos tipos: de simple corriente, para áridos de tamaños entre 180 y 400 mm, y a contracorriente, para tamaños entre 90 y 260 mm. El consumo de agua varía entre los 150 y los 2.000 m³/h, dependiendo del tamaño y si el flujo va en la misma dirección del material. A contracorriente se emplea menos, aunque su consumo de agua es menor.

El tiempo de permanencia del árido en el cilindro determina el efecto de lavado deseado. Este periodo, para áridos fáciles de lavar, está en torno al minuto y medio, pero puede más que duplicarse en el caso de que los materiales arcillosos o de aglomerados sea elevado, reduciéndose la capacidad de un 30 % a un 50 %. A más tiempo de permanencia, mayor índice de llenado, lo que aumenta la potencia empleada para mover el cilindro con una carga más grande.

Figura 3. Trómel de lavado. https://www.thprocess.com/es/productos/tromel-de-lavado-tl

Las ventajas del trómel son la ausencia de vibraciones, una construcción sencilla y barata, facilidad de separación con una instalación única. Como inconveniente destaca su capacidad relativamente pequeña y la dificultad de mantenimiento de las superficies de criba. La capacidad de lavado es baja, de 0,1 a 1,5 t/h/m2 por mm de abertura, debido a la reducida proporción de la superficie del tamiz que se utiliza durante su giro. Hoy en día se van sustituyendo por una combinación de trómel desenlodador y tamices vibrantes inclinados. Sin embargo, siguen montándose en grupos móviles de machaqueo y clasificación, de pequeña producción (hasta 35 t/h). Aún se conservan en el tratamiento de áridos para producir arenas sin finos y también a la salida del producto de molinos de bolas o barras. Se emplean en plantas de lavado de arenas e instalaciones de clasificación y reciclado. Otra aplicación es colocarlo a la salida de los molinos de bolas o barras, evitando que las piezas molturantes desgastadas pasen a las siguientes etapas. En los molinos autógenos y semiautógenos, el trómel retira los guijarros (pebbles) para llevarlos a trituración.

Se construyen dos tipos de trómeles. Los de construcción ligera, que no presentan revestimiento interior y con gran diámetro de boca, lo que supone un pequeño nivel de llenado y una baja potencia de accionamiento, con un bajo efecto de lavado. Los de construcción pesada tienen revestimiento interior desmontable, con un reducido diámetro de boca y elevada potencia. Estos últimos operan con un alto porcentaje de llenado y un alto efecto de lavado.

He grabado un vídeo explicativo sobre este tema que, espero, os sea útil.

Os dejo algunos vídeos explicativos, que espero sean de vuestro interés.

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación. Tecnología, diseño y aplicación. Ed. Rocas y Minerales, Madrid, 360 pp.

MARFANY, A. (2004). Tecnología de canteras y graveras. Fueyo Editores, Madrid, 525 pp.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos — ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La molienda en las instalaciones de tratamiento de áridos

Figura 1. Molino de bolas. https://carbosystem.com/como-funciona-un-molino-de-bolas/

El proceso de molienda es el último paso en la fragmentación del material después de la trituración. Se logra la fragmentación combinando fuerzas de compresión, corte, percusión y abrasión. Se estima que la molienda consume la mitad de la energía utilizada en los molinos.

El tamaño de salida en esta etapa de molienda puede variar entre milímetros y micras. La molienda gruesa produce tamaños de 1 a 2 mm, la molienda media produce tamaños de 200 a 500 micras, la molienda fina produce tamaños de 50 a 100 micras, y la molienda ultrafina produce tamaños de 10 micras.

Los molinos de rodamiento de carga, también conocidos simplemente como molinos, realizan este proceso tanto en seco como en húmedo. Estos incluyen cuerpos molturantes como barras, bolas, guijarros de sílex, o incluso fragmentos gruesos del material para ayudar en la fragmentación. Por lo tanto, una primera clasificación de los molinos se puede hacer según el tipo de cuerpos molturantes utilizados:

  • Molinos de barras: se emplean para moliendas más gruesas. Las barras se fabrican en acero de alto contenido en carbono y límite elástico.
  • Molinos de bolas: se emplean en moliendas finas. Las bolas se fabrican en acero de fundición o acero forjado aleado al Cr-Mo para ser resistentes al desgaste por impacto, o aleado al Ni para ser resistentes a la abrasión. A veces tienen formas cilíndricas o troncocónicas.
  • Molinos autógenos o semiautógenos: Los cuerpos de molienda pueden ser el propio mineral (AG) o un porcentaje de mineral y otro de bolas u otro tipo (SAG).
  • Molinos de pebbles: se utilizan cuerpos no metálicos; naturales o fabricados. Es el caso de guijarros de silex o porcelana para evitar la contaminación del mineral a causa del desgaste del acero.

La molienda se puede realizar por volcamiento, por agitación o por vibración, tal y como se puede observar en la Figura 2.

Figura 2. Tipos de molienda

La molienda por vía seca no debería tener un contenido de agua superior al 2%, ya que si el nivel de humedad supera un valor del 8 % al 9 %%, la pasta pegajosa resultante impedirá los choques y la abrasión, disminuyendo el rendimiento del proceso. El mejor rendimiento se logra con una humedad baja (1%), que ayuda a la rotura de los granos. La vía seca es necesaria cuando se trata de sustancias que reaccionan con el agua, como el clinker del cemento. Sin embargo, requiere una gran extensión de terreno para incluir un clasificador, transportadores, captadores de polvo, etc. Si la humedad es alta, es necesario efectuar un secado previo. Además, la molienda por vía seca aumenta la temperatura, por lo que no se pueden usar revestimientos de goma.

La molienda por vía húmeda presenta ventajas sobre la molienda en seco, siempre y cuando se cuente con agua y un adecuado tratamiento de esta tras el proceso de molienda. Además, requiere menos energía (1,3 veces menos), ya que el agua reduce la resistencia de los fragmentos. Sin embargo, la molienda por vía húmeda requiere un mayor consumo de revestimientos y cuerpos moledores debido a los ataques químicos por corrosión causados por los minerales con sulfuro (un desgaste hasta 6 – 8 veces superior a la vía seca por la corrosión). La molienda por vía semi-húmeda requiere un contenido de agua en el producto de entre un 2% y un 20%, mientras que la vía húmeda requiere un contenido de agua de entre un 30% y un 300%.

Los molinos pueden operar en forma discontinua o continua. En el modo intermitente, después de cargar material y cerrar el molino para que gire, se abre el molino para separar el material de los cuerpos molturantes. Este enfoque requiere máquinas pequeñas y una gran cantidad de manejo de materiales. Por lo tanto, es más común operar de manera continua, descargando el material y los cuerpos molturantes simultáneamente, deteniendo la operación solo para reabastecer los cuerpos molturantes o para mantenimiento. En la producción de áridos, se trabaja siempre de manera continua.

La molienda en circuito abierto tiene menos control sobre la distribución de tamaños de partículas en el producto, lo que resulta en una distribución más amplia. La velocidad de alimentación debe ser más baja y el tiempo de permanencia de las partículas debe ser más largo para garantizar una molienda adecuada. Esto lleva a un mayor porcentaje de partículas sobremolidas y un mayor consumo de energía (1,5 veces más que en el circuito cerrado).

Por otro lado, la molienda en circuito cerrado es la opción predominante en la industria minera. El producto se clasifica después de ser descargado del molino, lo que resulta en un menor consumo de energía en comparación con el circuito abierto, un mayor control sobre el tamaño máximo del producto y la capacidad de usar tanto la vía seca como la vía húmeda. Los molinos de bolas y los autógenos son los tipos más comúnmente utilizados en el circuito cerrado.

El revestimiento o blindaje del interior del tambor de los molinos se diseña para proteger la carcasa del molino contra la abrasión, la corrosión y el desgaste. Está compuesto de piezas intercambiables y debe ser resistente a impactos y tener la capacidad de minimizar el deslizamiento entre los cuerpos molturantes y el tambor. Los diseños con resaltes o nervios mejoran el movimiento de la carga y se fabrican en acero fundido o laminado por su alta resistencia, pero también pueden ser de cerámica. En el caso de molinos que traten materiales muy duros, es recomendable emplear caucho como revestimiento, siempre que la temperatura no supere los 80 °C y no haya contacto con reactivos de flotación.

Os dejo un vídeo en el que os explico este tema. Espero que os sea de interés.

Referencias:

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.