Un nuevo enfoque para mejorar el diseño sostenible de cimentaciones tipo losa

Acaban de publicar nuestro artículo en la revista Environmental Impact Assessment Review (primer cuartil del JCR), en el que se propone un método directo y más riguroso para calcular el módulo de balasto en losas de cimentación, que incorpora un nuevo enfoque de seguridad y criterios de sostenibilidad para mejorar el diseño suelo-estructura.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.

En las últimas décadas, el diseño de cimentaciones ha evolucionado hacia soluciones más seguras, eficientes y sostenibles. Sin embargo, el módulo de balasto vertical (Ks), uno de los parámetros más utilizados en la modelización del contacto suelo-estructura, sigue empleándose en muchos proyectos como si se tratara de una propiedad intrínseca del terreno. El artículo analizado sugiere un cambio de paradigma en esta práctica, al introducir un método directo para estimar Ks a partir de la relación carga-asentamiento, así como un nuevo marco de seguridad orientado al diseño sostenible. Esta aportación es especialmente relevante en el caso de las cimentaciones tipo losa, habituales en edificios y estructuras industriales.

El estudio parte de una cuestión fundamental: ¿cómo se puede estimar de forma rigurosa el módulo de balasto vertical (Ks) en losas de cimentación, considerando parámetros geotécnicos habitualmente ignorados y, al mismo tiempo, integrando criterios de sostenibilidad y seguridad en el diseño?

Esta cuestión surge de las deficiencias detectadas en los métodos indirectos y semidirectos que se emplean comúnmente, ya que no consideran aspectos clave como la profundidad de la influencia o los efectos de compensación de cargas.

Los autores desarrollan una metodología directa que combina varias herramientas avanzadas de análisis geotécnico:

  • Teoría del semiespacio elástico para representar el comportamiento del terreno.

  • Análisis de asientos por capas, con el fin de capturar la variabilidad en profundidad.

  • Mecánica de consolidación basada en ensayos edométricos, que permite incorporar la respuesta deformacional del suelo bajo carga.

  • Consideración explícita de la profundidad de la influencia y de la compensación de cargas, factores que rara vez se incluyen en los métodos tradicionales.

Con este planteamiento, se obtiene directamente un valor de Ks coherente con los principios de la energía elástica y adecuado para modelos avanzados de interacción suelo-estructura. El valor resultante, 5,30 MN/m³, se sitúa entre los límites inferiores y superiores calculados, lo que confirma la consistencia del método.

El estudio no se limita al aspecto puramente geotécnico, sino que también integra una evaluación de la sostenibilidad del ciclo de vida de tres alternativas de losa de hormigón armado. Para ello, combina un proceso jerárquico analítico neutrosófico (NAHP-G) con el método de decisión multicriterio ELECTRE III, considerando dimensiones estructurales, ambientales y socioeconómicas.

Además, se introduce un coeficiente de seguridad específico para Ks, calibrado para considerar la variabilidad espacial del subsuelo y mejorar el diseño en términos de servicio.

Los resultados del trabajo son especialmente significativos:

  • El método directo permite obtener un Ks más representativo del comportamiento real del terreno y de la losa bajo carga.

  • El nuevo coeficiente de seguridad proporciona un diseño más fiable y coherente con la incertidumbre del subsuelo.

  • Se logra una mejora de 2,5 veces en el índice de seguridad social y una reducción del 50 % en los impactos ambientales respecto a metodologías convencionales.

  • El estudio redefine Ks como una variable de diseño, no como una constante del suelo, corrigiendo así décadas de uso inapropiado en la ingeniería geotécnica.

Las conclusiones del artículo tienen un impacto directo en la práctica profesional:

  1. Mejora del diseño de losas: el método permite ajustar mejor los modelos numéricos y evitar tanto el sobredimensionamiento como los fallos por asientos excesivos.

  2. Integración de la sostenibilidad en fases tempranas del proyecto: el marco NAHP-G + ELECTRE IS proporciona una herramienta objetiva para comparar alternativas de cimentación no solo por criterios técnicos, sino también por criterios ambientales y sociales.

  3. Mayor seguridad y fiabilidad: el nuevo coeficiente de seguridad para Ks ayuda a gestionar la incertidumbre y aumenta los márgenes de seguridad de forma cuantificada.

  4. Aplicación en proyectos con elevada heterogeneidad del terreno: el enfoque resulta especialmente útil en suelos con variabilidad marcada, donde los métodos simplificados generan resultados poco fiables.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MORENO-SERRANO, J.F.; NAVARRO, I.J.; YEPES, V. (2026). Innovative safety framework and direct load–settlement method to optimize vertical subgrade modulus in sustainable mat foundations. Environmental Impact Assessment Review, 118, 108191. DOI:10.1016/j.eiar.2025.108191

Os dejo el artículo completo para su descarga, ya que está publicado en abierto.

Pincha aquí para descargar