Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y toma de decisión multicriterio

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El documento Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y MCDM. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Estas son las principales contribuciones descritas en el artículo:

  • Marco integrado para la optimización: La investigación presenta un marco integral que integra algoritmos de optimización multiobjetivo (MOO) y técnicas de toma de decisiones multicriterio (MCDM). Este marco no solo es aplicable a las cerchas pretensadas, sino también a varios diseños estructurales, lo que mejora la toma de decisiones en ingeniería estructural.
  • Algoritmos de optimización avanzados: el estudio emplea tres algoritmos MOO avanzados (NSGA-III, CTAEA y SMS-EMAO) para optimizar el diseño estructural de las cerchas arqueadas pretensadas. Este enfoque permite evaluar de forma sólida los diferentes objetivos del diseño, como la minimización del peso, el rendimiento de carga y la capacidad de construcción.
  • Métricas de evaluación integrales: el documento incorpora una serie de visualizaciones analíticas y métricas de evaluación exhaustivas para comprender la variabilidad de las diferentes variables en el contexto de Pareto. Esto ayuda a ilustrar las ventajas y desventajas que conllevan las distintas estrategias de optimización y proporciona una visión más clara del proceso de diseño.
  • Evaluación del rendimiento de los algoritmos: la investigación evalúa el rendimiento de los algoritmos de optimización utilizando métricas de distancia generacional (GD) y distancia generacional invertida (IGD). Los resultados indican que el NSGA-III supera a los demás algoritmos en términos de convergencia con respecto a Pareto, lo que proporciona información valiosa sobre la eficacia de cada algoritmo.
  • Validación estadística de los resultados: el artículo emplea la prueba de Kruskal-Wallis para validar las diferencias de rendimiento entre los algoritmos. Esto añade credibilidad a los hallazgos y resalta las ventajas y limitaciones de cada enfoque de optimización, que es crucial para las futuras aplicaciones de optimización estructural.
  • Implicaciones prácticas para la construcción: Las innovaciones presentadas en el documento mejoran el rendimiento estructural, reducen el consumo de recursos y mejoran la capacidad de construcción y la seguridad. Estas contribuciones demuestran las implicaciones prácticas para unas prácticas de construcción más eficientes y sostenibles, y abordan la complejidad de los métodos de diseño tradicionales.

En resumen, este documento promueve significativamente la comprensión y la aplicación de las cerchas pretensadas al proporcionar un marco sólido para la optimización y la toma de decisiones, junto con información práctica para mejorar las prácticas de construcción.

Abstract:

The structural design of prestressed arched trusses presents a complex challenge due to the need to balance multiple conflicting objectives such as structural performance, weight, and constructability. This complexity is further compounded by the interdependent nature of the structural elements, which necessitates a comprehensive optimization approach. Addressing this challenge is crucial for advancing construction practices and improving the efficiency and safety of structural designs. The integration of advanced optimization algorithms and decision-making techniques offers a promising avenue for enhancing the design process of prestressed arched trusses. This study proposes the use of three advanced multi-objective optimization algorithms: NSGA-III, CTAEA, and SMS-EMOA, to optimize the structural design of prestressed arched trusses. The performance of these algorithms was evaluated using Generational Distance and Inverted Generational Distance metrics. Additionally, the non-dominated optimal designs generated by these algorithms were assessed and ranked using multiple Multi-Criteria Decision-Making techniques, including SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR. This approach allowed for a robust comparison of the algorithms and provided insights into their effectiveness in balancing the different design objectives. The results of the study indicate that NSGA-III exhibited superior performance with a GD value of 0.215, reflecting a closer proximity of its solutions to the Pareto front, and an IGD value of 0.329, indicating a well-distributed set of solutions across the Pareto front. In comparison, CTAEA and SMS-EMOA showed higher GD values of 0.326 and 0.436, respectively, suggesting less convergence to the Pareto front. However, SMS-EMOA demonstrated a balanced performance in terms of constructability and structural weight, with an IGD value of 0.434. The statistical significance of these differences was confirmed by the Kruskal-Wallis test, with p-values of 2.50×10−15 for GD and 5.15×10−06 for IGD. These findings underscore the advantages and limitations of each algorithm, providing valuable insights for future applications in structural optimization.

Keywords:

Multi-objective optimization; multi-criteria decision-making; NSGA-III; CTAEA; SMS-EMOA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; PARTSKHALADZE, G.; ALCALÁ, J.; YEPES, V. (2024). Enhanced Structural Design of Prestressed Arched Trusses through Multi-Objective Optimization and MCDM. Mathematics, 12(16), 2567. DOI:10.3390/math12162567

Descargar (PDF, 2.8MB)

Mejora de la robustez en la optimización de estructuras modulares prefabricadas: Integración de NSGA-II, NSGA-III y RVEA para una infraestructura sostenible

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El documento explora el diseño de estructuras modulares prefabricadas sostenibles utilizando la optimización multiobjetivo (MOO) y la toma de decisión multicriterio (MCDM) con algoritmos avanzados como NSGA-II, NSGA-III y RVEA. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo destaca la importancia de integrar la sostenibilidad del ciclo de vida en los proyectos de infraestructura de transporte para estimular la innovación y la colaboración entre las partes interesadas. Además, presenta una estrategia de diseño novedosa que se centra en la optimización del ciclo de vida de los marcos modulares prefabricados de hormigón armado (RCPMF). Por último, amplía la comprensión de la aplicabilidad de los algoritmos avanzados de MOO y las técnicas de MCDM para mejorar el desarrollo sostenible de la infraestructura.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio evalúa el rendimiento de optimización del ciclo de vida de los algoritmos NSGA-II, NSGA-III y RVEA dentro de una estructura prefabricada tipo marco de diseño coherente para una infraestructura de transporte sostenible.
  • El NSGA-III se identifica como el algoritmo con mejor rendimiento, lo que demuestra su potencial para facilitar enfoques de diseño sostenibles.
  • El problema del MCDM se evalúa rigurosamente y se abordan nueve soluciones no dominantes generadas por los algoritmos de optimización, lo que demuestra la eficiencia y la fiabilidad del marco integrado de MOO y MCDM.
  • Los resultados abogan por un enfoque transformador del desarrollo de infraestructuras, orientado hacia soluciones de ingeniería más avanzadas y sostenibles.

Abstract:

The advancement toward sustainable infrastructure presents complex multi-objective optimization (MOO) challenges. This paper expands the current understanding of design frameworks that balance cost, environmental impacts, social factors, and structural integrity. Integrating MOO with multi-criteria decision-making (MCDM), the study targets enhancements in life cycle sustainability for complex engineering projects using precast modular road frames. Three advanced evolutionary algorithms—NSGA-II, NSGA-III, and RVEA—are optimized and deployed to address sustainability objectives under performance constraints. The efficacy of these algorithms is gauged through a comparative analysis, and a robust MCDM approach is applied to nine non-dominated solutions, employing SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR decision-making techniques. An entropy theory-based method ensures systematic, unbiased criteria weighting, augmenting the framework’s capacity to pinpoint designs, balancing life cycle sustainability. The results reveal that NSGA-III is the algorithm converging towards the most cost-effective solutions, surpassing NSGA-II and RVEA by 21.11% and 10.07%, respectively, while maintaining balanced environmental and social impacts. The RVEA achieves up to 15.94% greater environmental efficiency than its counterparts. The analysis of non-dominated solutions identifies the 𝐴4𝐴4 design, utilizing 35 MPa concrete and B500S steel, as the most sustainable alternative across 80% of decision-making algorithms. The ranking correlation coefficients above 0.94 demonstrate consistency among decision-making techniques, underscoring the robustness of the integrated MOO and MCDM framework. The results in this paper expand the understanding of the applicability of novel techniques for enhancing engineering practices and advocate for a comprehensive strategy that employs advanced MOO algorithms and MCDM to enhance sustainable infrastructure development.

Keywords:

Multi-objective optimization; multi-criteria decision-making; NSGA-II; NSGA-III; RVEA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Enhancing Robustness in Precast Modular Frame Optimization: Integrating NSGA-II, NSGA-III, and RVEA for Sustainable Infrastructure. Mathematics, 12(10):1478. DOI:10.3390/math12101478

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Descargar (PDF, 1001KB)