La perforación con martillo en cabeza es un sistema clásico que ha utilizado el accionamiento neumático. De este tipo de perforadora ya hemos hablado en un artículo anterior. Sin embargo, hoy en día está siendo desplazado por los martillos en fondo y equipos rotativos. De hecho, desde la aparición de los martillos hidráulicos en la década de los 70, este sistema ha visto resurgir su utilidad y campo de aplicación.
¿Cuál es la razón por este cambio de tendencia? La justificación es muy sencilla. Basta emplear las ecuaciones básicas de la energía y la potencia desarrollada por el pistón de este tipo de perforadoras. En efecto, la energía cinética que alcanza el pistón es proporcional a la presión de aire, a la superficie del pistón y a la longitud de carrera. Para calcular la potencia bastará calcular el número de impactos (energía cedida) en la unidad de tiempo (impactos por minuto).
Por tanto, ante dos perforadoras de la misma potencia, una produciendo pocos impactos por minuto (n), pero de gran energía, y otra con un elevado número de impactos por minuto (N), pero de pequeña energía, tendremos que la primera perforadora romperá más roca a cada golpe, pero la barrena sufrirá mucho, llegando en algunos casos a clavarse en la roca. La segunda cortará menos roca por impacto, de modo que no fatigará el varillaje ni clavará la barrena, siempre que su impacto supere la energía necesaria para romper esa menor cantidad de roca.
Por tanto, las perforadoras con un gran pistón, gran carrera y presiones bajas son una tendencia antigua que se sustituye por perforadoras hidráulicas, con altas presiones, pistones y carrera pequeños y gran número de impactos por minuto.
Os dejo a continuación la demostración de esta formulación que, espero, os sea de utilidad.
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.
Tanto las excavadoras con cuchara frontal o las retroexcavadoras, junto con los martillos hidráulicos, se emplean profusamente en labores de saneo y desescombro en los procedimientos convencionales de excavación de túneles; sin embargo, llegan a constituir un procedimiento constructivo por sí mismo en los siguientes casos:
Excavadoras: se utilizan en rocas blandas, con resistencia a compresión inferior a 5 MPa, en general.
Martillos hidráulicos pesados: se montan sobre retroexcavadoras convencionales y llegan a incluir utensilios especiales, como brazos telescópicos, que facilitan el acceso a todas las partes del frente. Siempre se requiere la utilización de palas cargadoras para la retirada del escombro.
Los martillos hidráulicos realizan un ataque puntual en la que la energía se genera mediante motores eléctricos o diesel y se transmite a través de un circuito hidráulico a la herramienta “puntero” situada en el extremo articulado de la máquina. La roca se quebranta mediante la energía de impacto generada y el material rocoso excavado se desprende en forma de pequeños bloques o esquirlas. Estos martillos suelen emplearse en los siguientes casos:
Macizos rocosos de matriz dura fuertemente plegados o fracturados (RQD < 25-30).
Macizos rocosos con facturación media (RQD < 50) y matriz dura (resistencia a compresión < 100 MPa)
La excavación con estos medios es posible por encima de los condicionantes indicados, si bien el rendimiento es muy bajo; no obstante, circunstancias especiales llegan a requerir su empleo en macizos rocosos de calidad media a alta, como por ejemplo para reducir vibraciones. Así, varios túneles de la Autopista de las Flores, en San Remo (Italia), han sido construidos de esta forma para no afectar a los invernaderos de flores que se asientan en las laderas de los accidentes orográficos salvados por los túneles.
Os dejo varios vídeos sobre el tema. En este primero podemos ver una excavadora hidráulica HITACHI 460 con un martillo de 5 toneladas durante la excavación de un túnel.
En este otro, vemos cómo se utiliza una retroexcavadora en el túnel del Rañadoiro.
Referencias:
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Métodos y equipos de excavación en túnel. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.835. Valencia.
La forma habitual de perforación de una roca a rotopercusión es la perforación con martillo en cabeza. El principio de corte se basa en el impacto realizado en el exterior de la perforación de un pistón de acero sobre una barrena o varillaje, que a su vez transmite la energía al fondo del taladro por medio del elemento final (boca) que fragmenta en esquirlas la roca. Para asegurar una sección circular en el barreno, a cada golpe gira el útil para presentar a su corte nueva roca virgen en el fondo del barreno. Además, es preciso evacuar del barreno los detritus (barrido), lo que se consigue mediante insuflado de aire al fondo del taladro. Parte de la energía del impacto se pierde en la transmisión y en los cambios de sección del varillaje, por lo que la velocidad de penetración de la perforación disminuirá con la profundidad del barreno. Es un sistema que conceptualmente es similar al barrenado manual, donde un operario golpea con una maza la cabeza de una barrena.
Se pueden distinguir los martillos manuales de las perforadoras de martillo en cabeza propiamente dichas. Los primeros son equipos sencillos, actualmente en desuso, salvo en demoliciones o perforaciones de pequeña sección no mecanizable. Los segundos son equipos pesados que, en consecuencia, precisan de su montaje en chasis especiales.
Las perforadoras con martillo en cabeza pueden accionarse mediante martillos neumáticos y martillos hidráulicos. El desarrollo de los martillos hidráulicos en los años sesenta y comienzos de los setenta supuso un gran avance tecnológico en la perforación de rocas.
Tanto las perforadoras neumáticas como las hidráulicas constan de los siguientes elementos:
Un cilindro que con su movimiento alternativo golpea el extremo de una barrena
Un mecanismo de rotación incorporado al pistón (barra rifle o rueda trinquete) o independiente de este (motor de rotación)
Un sistema que permite el barrido del barreno mediante una aguja de barrido que atraviesa el pistón o bien por medio de la inyección del fluido de barrido lateralmente en la cabeza frontal de la perforadora
Perforadoras neumáticas
El accionamiento de estas perforadoras es mediante aire comprimido, con una misma presión tanto para el mecanismo de impacto como para el aire de barrido. Son perforadoras que se han empleado de forma tradicional para barrenos de menos de 150 mm de diámetro. Su peso y tamaño son menores que el de las perforadoras hidráulicas. Presentan un consumo de aire de unos 2,1-2,8 m³/min por cada centímetro de diámetro, la velocidad de rotación es de 40-400 rpm y la carrera del pistón de 35-95 mm.
La rotación del varillaje puede realizarse mediante:
Barra estriada o rueda de trinquete: Muy generalizado en perforadoras ligeras
Motor independiente: Barrenos de gran diámetro
Las longitudes de perforación con este sistema no superan habitualmente los 30 m debido a las importantes pérdidas de energía debidas a la transmisión de la onda de choque y a las desviaciones de los barrenos. Lo normal es utilizar barrenos cortos, con longitudes entre 2 y 15 m y el empleo de diámetros pequeños, entre 38 y 100 mm. Además, a medida que aumenta la longitud del barreno, se precisa de una mayor presión de aire de barrido.
Entre las ventajas de las perforadoras neumáticas cabe destacar las siguientes:
Gran simplicidad
Fiabilidad y bajo mantenimiento
Facilidad de reparación
Precios de adquisición bajos
Perforadoras hidráulicas
Estos equipos se introdujeron al principio en los trabajos subterráneos, pero poco a poco, se están imponiendo en la perforación en superficie. Estructuralmente, la perforadora hidráulica es similar a la neumática, aunque el accionamiento se realiza mediante un grupo de bombas que suministran un caudal de aceite que impulsa los componentes. Además, estas unidades van equipadas con un compresor cuya función es suministrar aire para el barrido del detritus, pudiéndose incrementar la presión del aire con la profundidad del barreno. La presión de trabajo de estos equipos ronda entre 7,5 y 25 MPa, la potencia de impacto entre 6 y 20 kW y la velocidad de rotación entre 0 y 500 rpm. Aquí el consumo relativo de aire comprimido es menor, entre 0,6 y 0,9 m³/min por cada centímetro de diámetro.
Respecto a las neumáticas, necesitan de una mayor inversión inicial, siendo las reparaciones más complejas y costosas, y requiriendo una mejor organización y formación del personal de mantenimiento. En cambio, las ventajas tecnológicas de las perforadoras hidráulicas son las siguientes:
Menor consumo de energía: tres veces menos
Menor coste de accesorios de perforación: incremento del 20% de la vida útil del varillaje
Mayor capacidad de perforación: velocidades de penetración entre un 50 y un 100% mayores
Mejores condiciones ambientales: más limpios y silenciosos
Mayor elasticidad en la operación: posibilidad de variar la presión de accionamiento, la energía y la frecuencia de golpeo
Mayor facilidad para la automatización: cambio de varillaje, mecanismos antiatranque, etc.
Os dejo un Polimedia explicativo sobre este sistema de perforación que espero os sea útil.
Referencias:
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.
En la industria de la construcción, siempre se presenta la necesidad de romper materiales y como resultado de esto, deben ser utilizados equipos como martillos demoledores hidráulicos, robots de demolición, y pinzas hidráulicas de demolición.
Un puente no sólo puede demolerse mediante explosivos. A veces no hay más remedio que hacerlo mediante martillo rompedor. Os dejo este enlace de Pep Lloveras sobre el tema. Otro enlace interesante es este pequeño proyecto sobre la retirada y demolición de un puente, que os podéis descargar en el siguiente enlace: http://www.oviedo.es/upload/contratos/docs/PROY_demolPTrubia.pdf
También os adjunto un vídeo para que veáis cómo se ha desmantelado un paso superior con maquinaria de demolición. En este caso, se trata de una estructura sobre la autopista 101 del sur de California, que en apenas 5 horas fue demolida. El vídeo es de Anthony Plasencia. Espero que os guste.
Os paso otro vídeo, cuyo enlace que lo ha facilitado Moisés de la Llave. En mayo de 2010 fue demolido mediante varios equipos hidráulicos dotados de mandíbulas (cizallas) en una primera fase y posteriormente mediante martillo rompedor, el puente de la autovía A-42 sobre la N-400 en Toledo (entre Santa Bárbara y el Polígono), cuya estructura presentaba un peligroso deterioro y que sería posteriormente reemplazado por un nuevo puente.
Otro vídeo trata de la demolición del viejo Puente Chartershall en Escocia donde había sido golpeado por los camiones en numerosas ocasiones. Se encuentra en la autopista M9, al norte de la salida 9, M9/M80 en Pirnhall Interchange. El proceso de demolición y construcción del nuevo puente duró 3 noches y tuvo un coste de más de 1 millón de euros.