Estribos cerrados de puentes

Figura 1. Esquema de estribo cerrado. Imagen: V. Yepes

El estribo cerrado es uno de los tipos más comunes de estribos utilizados en puentes. Consiste en un muro frontal, que constituye la estructura principal del estribo, aletas laterales (con o sin muro lateral), un murete guarda y una losa de transición. En la Figura 1 se puede ver el esquema de su sección transversal. El muro frontal se encarga de recibir la carga del tablero a través de los apoyos, los cuales permiten que el tablero se mueva de forma independiente a los movimientos ocasionados por las tierras circundantes. Además, el estribo cerrado se apoya en el terreno natural, en lugar de hacerlo sobre el terraplén, lo que ayuda a reducir los asientos a largo plazo. Esto es especialmente beneficioso para evitar asentamientos que podrían afectar al tablero si este fuera hiperestático.

El diseño de la parte superior del estribo se determina según el tipo de carga y los movimientos del tablero. Por otro lado, la parte inferior está influenciada por las acciones del tablero y el empuje de las tierras, especialmente cuando el estribo es alto. En el caso de puentes ferroviarios, donde el empuje horizontal en la parte superior debido al frenado es significativo, el diseño de la parte inferior del estribo, incluyendo la variación de los espesores, el tamaño del cimiento, entre otros aspectos, también se ve afectado por este efecto. En los viaductos destinados a trenes de alta velocidad, es común utilizar anclajes tipo Gewi o cables de pretensado para sujetar el tablero a uno de los estribos. Este estribo se denomina estribo fijo, mientras que la junta de dilatación se ubica en el estribo opuesto.

El cierre lateral del estribo depende de si hay posibilidad de derrame de tierras por delante de él. En el caso poco frecuente de estribos cerrados donde se pueda producir derrame, se soluciona colocando una pequeña aleta triangular perpendicular al muro frontal del estribo. La altura y longitud de la aleta dependerán del grosor del tablero y la inclinación del derrame del terraplén. En el caso más frecuente, donde no hay derrame de tierras por delante del estribo, existen dos soluciones posibles. La primera es extender muros en continuación del muro frontal, conocidos como “aletas en prolongación”. La segunda es disponer muros adyacentes al propio muro frontal y perpendiculares a este, conocidos como “muros en vuelta”. En este último caso, dependiendo de la altura del estribo y la inclinación de las tierras, puede ser necesario construir verdaderos muros de contención para contener el terraplén.

Este tipo de estribo permite no verter tierras por delante de él, lo cual es especialmente útil cuando se desea evitar invadir la vía inferior. En caso de que haya edificaciones cercanas, se puede extender lateralmente el estribo mediante la construcción de un muro en vuelta, que puede prolongarse según sea necesario. Estos muros en vuelta pueden tener un ángulo de 90º con el estribo (Figura 2), siguiendo la disposición del vial en caso de que el estribo se desvíe, o pueden formar un ángulo (generalmente de 30º) siguiendo la inclinación del terraplén.

Figura 2. Paso elevado sobre la línea del ferrocarril en el término municipal de Lodosa. http://www.navarra.es/NR/rdonlyres/36F08D42-4369-4D8F-B831-194DE72E5827/103157/110408op61b2.JPG

En el caso de estribos de gran altura, generalmente a partir de unos 8 m, existen dos opciones alternativas en lugar de mantener un espesor constante, que suele ser significativo y solo necesario en los últimos metros inferiores, donde el cortante y el momento flector son más altos. La primera opción es establecer un espesor variable, en la cual se suele cambiar el espesor cada 4 m, que coincide con la altura típica de las capas de hormigonado. La segunda opción es utilizar un muro frontal nervado con rigidizadores verticales. En este caso, el muro frontal transmite el empuje de las tierras a través de la flexión horizontal a los nervios, y estos, a su vez, lo transmiten verticalmente a la cimentación.

La impermeabilización es un elemento esencial en un estribo, tanto para garantizar su funcionalidad como para reducir los empujes del trasdós. Por esta razón, todos los estribos deben contar con una capa de material filtrante en el trasdós, así como con un tubo de drenaje en el fondo que permita la evacuación de las aguas acumuladas detrás del muro frontal hacia el exterior.

Los asientos que ocurren en el terraplén de acceso son más significativos que los que se producen en el muro. En los puentes de carretera, se evita el resalto abrupto que se generaría en la unión entre ambos elementos mediante el uso de una losa de transición. Esta losa se apoya en las tierras de un lado y en el muro del otro, proporcionando una transición suave entre ambos extremos. El tamaño de esta losa dependerá de la diferencia de asientos entre el muro y el terraplén, así como de la altura y calidad del terraplén. Por lo general, una losa de transición de 4 a 5 m de longitud suele ser suficiente (Manterola, 2006).

Os dejo un pequeño vídeo donde se explican los estribos de los puentes, incluido el estribo cerrado. Espero que os sea de interés.

Referencias:

ARENAS, J.J.; APARICIO, A.C. (1984). Estribos de puente de tramo recto. Santander: Universidad de Cantabria.

DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estribos abiertos de puente

Figura 1. Esquema de estribo abierto. Imagen: V. Yepes

Se recomienda utilizar el estribo oculto bajo el terraplén en los puentes tipo paso superior, ya que esto mejora la visibilidad de los conductores que transitan por la vía inferior, lo cual a su vez aumenta la comodidad y la funcionalidad de la infraestructura. Si el estribo permite el paso de tierras a través de él, se considera un estribo abierto; de lo contrario, se clasifica como cerrado. En el caso de puentes con alturas superiores a 4 o 5 m, el uso de un estribo abierto ahorra materiales en comparación con uno cerrado. Estas alturas suelen ser comunes en los pasos superiores de las carreteras.

En esencia, un estribo abierto o falso se compone de un dintel o cargadero que sirve de apoyo para el tablero del puente. Este dintel descansa sobre pantallas o diafragmas que transfieren las cargas a la cimentación. Una característica importante del estribo abierto es que permite el vertido de tierra sobre él, lo cual ayuda a reducir el empuje horizontal ejercido por el terraplén. Para lograr esto, se crea una transición entre la viga cabezal que sostiene el dintel y el suelo de cimentación mediante el empleo de pantallas, pilotes u otros elementos que permiten el paso de la tierra. En esta solución, las pantallas desempeñan un papel crucial al reemplazar en gran medida el muro frontal del estribo cerrado, lo que resulta en un ahorro significativo de hormigón.

Estos estribos suelen estar compuestos por tres elementos principales (ver Figura 1): una viga cabezal que alberga los neoprenos y sirve como soporte y protección del tablero contra las tierras del terraplén; un murete de guarda o tape colocado sobre la viga para evitar la entrada de tierra en la zona de apoyo, con una aleta en cada extremo para mayor protección; dos pantallas que sustentan la viga cabezal o cargadero y permiten el paso del terraplén frente a ellas; y una zapata corrida que distribuye las cargas provenientes de las pantallas hacia el terreno de cimentación. Además, se incluye una losa de transición entre el terraplén y el tablero, la cual se apoya en la viga cabezal. Es frecuente que las alturas totales de los estribos y las tensiones admisibles de cimentación se encuentren en un rango de 6 a 15 m y de 0,2 a 0,5 MPa, respectivamente.

Figura 2. Geometría del estribo abierto: variables y principales parámetros (Luz et al, 2015).

La cantidad de pantallas a utilizar, así como su espesor y altura en la base, dependerán del ancho total del tablero y la altura del estribo. Incluso es posible contar con estribos abiertos que requieran solamente dos pantallas para tableros de aproximadamente 20 m de ancho, aunque en casos de tableros más anchos podrían ser necesarios diafragmas adicionales.

En este tipo de configuración, el dintel o cargadero se construye una vez completado el terraplén y los pilotes. Los pilotes, a su vez, se instalan después de finalizar los terraplenes para reducir en la medida de lo posible las presiones ejercidas por las tierras.

Sin embargo, este tipo de estribo no se considera apropiado para su uso en cauces fluviales debido a que la presencia de agua puede provocar la erosión del talud. Su utilización se limita a cruces de carreteras o vías férreas. Es imprescindible que el desbordamiento de tierras no cause inundaciones en la plataforma de tráfico inferior. Por lo tanto, el estribo debe estar adecuadamente separado de dicha plataforma, lo que implica que el tablero deba tener una longitud mayor.

Referencias:

ARENAS, J.J.; APARICIO, A.C. (1984). Estribos de puente de tramo recto. Santander: Universidad de Cantabria.

DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.

LUZ, A., YEPES, V., GONZÁLEZ-VIDOSA, F., MARTÍ, J. V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540): e114, doi: http://dx.doi.org/10.3989/ic.14.089.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estribos de puente de tierra estabilizada mecánicamente

Figura 1. Estribo de tierra estabilizada mecánicamente. Fuente: http://www.tierra-armada.com/

En situaciones en las que no es factible verter tierra frente al alzado del estribo debido a un terreno con baja capacidad portante, deformable o no se pueden realizar excavaciones, se requiere utilizar técnicas de tierra estabilizada mecánicamente, conocido también como suelo reforzado o bajo el nombre comercial de Tierra Armada®. Estas técnicas también son aplicables en zonas urbanas, donde es necesario evitar el derrame del terraplén y aprovechar las características estéticas que ofrecen este tipo de muros. Consisten en reforzar el material del terraplén mediante pletinas o flejes presentes en las escamas, fabricadas generalmente con materiales galvanizados o de fibra de carbono, que se colocan en el frente del estribo. Estas pletinas absorben eficientemente los empujes horizontales al interactuar con el suelo a través de la fricción.

El muro se complementa con escamas prefabricadas de hormigón, a las cuales se fijan los refuerzos (Figura 1). Estas escamas se entrelazan entre sí, presentando diversas formas, colores y texturas. En el trasdós de estas escamas se alojan armaduras o flejes que contrarrestan el empuje de las tierras mediante el rozamiento. La longitud de las armaduras debe ser igual o mayor a 0,7 veces la altura H del muro. En el caso de estructuras hiperestáticas, que pueden ser muy sensibles a los movimientos del macizo de tierra reforzada, es común separar el apoyo extremo del tablero del muro de tierra reforzada mediante la disposición de lo que podría considerarse como una pila adicional. En la coronación del muro, es posible disponer de un cargadero o durmiente que brinda soporte al tablero. Es frecuente separar el apoyo del tablero del muro mediante la colocación de una pila-estribo ubicada delante de este (Figura 2). La ejecución debe realizarse con cuidado para prevenir patologías, como descensos significativos o abultamiento de la pared exterior, entre otros problemas.

Figura 2. Estribo de tierra estabilizada mecánicamente. Fuente: http://www.tierra-armada.com/

La construcción de este tipo de estribos se caracteriza por ser rápida, sencilla y económica, lo que resulta en ahorros significativos, del orden del 15% al 40%, en comparación con estribos de puente ejecutados mediante sistemas convencionales. No obstante, es fundamental que estos estribos se ejecuten con gran precisión para evitar problemas posteriores como la ruptura de las escamas o desplazamientos.

El cargadero o estribo flotante debe diseñarse de manera que la presión transmitida al macizo de tierra reforzada sea adecuada, evitando una carga excesiva que requiera un alto número de armaduras en los niveles inferiores de escamas. Como referencia, se recomienda dimensionar la planta del durmiente de tal manera que la presión transmitida al lecho no supere los 0,2 MPa.

En el caso de estribos de altura moderada, la distancia mínima requerida entre el borde del durmiente y el paramento es de 10 cm. Por el contrario, para muros de 10 m de altura, dicha distancia no debe ser inferior a 15 cm. Es importante garantizar que el espacio entre el eje de los apoyos del tablero y el borde exterior del paramento no sea inferior a 1 m.

Al considerar las características geométricas de un estribo de tierra estabilizada mecánicamente, es fundamental tener en cuenta varios aspectos clave. Primero, la anchura B del macizo de suelo reforzado, determinada por la longitud de los flejes, debe ser mayor al 70% de H siempre que H sea inferior a 20 m, y mayor al 60 % de H más 2 m en el caso de muros más bajos. Además, la profundidad D del muro en el terreno debe ser de al menos 0,40 m, a menos que esté cimentado sobre un terreno compacto no susceptible a heladas, y generalmente supera el 10 % de H en estribos normales. Asimismo, la presión transmitida por el durmiente debido a las cargas permanentes debe ser inferior a 0,2 MPa, y la distancia entre el eje de los apoyos del tablero y el borde exterior del paramento debe ser de al menos 1 m. Es relevante que el estribo flotante se asiente sobre una capa de suelo tratado con un 3% a 5% de cemento, con un espesor mínimo de 0,50 m. La parte frontal del durmiente debe separarse al menos 10 cm del paramento, y en el caso de estribos con una altura superior a 10 m, se requiere una distancia mínima de 15 cm. Además, el durmiente debe contar con un resguardo mínimo de suelo tratado en su parte trasera de 30 cm.

En algunas ocasiones, se separa la función de contener las tierras de la de soportar el dintel. En este caso, el dintel estará pilotado y se ubicará por delante del muro. Sin embargo, es importante considerar que la carga del muro puede generar rozamientos negativos en los pilotes, lo que podría hacer que trabajen en tracción. Para evitar esta situación, se recomienda construir primero el muro y posteriormente ejecutar el pilotaje del durmiente. Es preferible pilotar lo más tarde posible para permitir que se produzca la mayor parte del asiento del muro antes de su ejecución.

Os dejo algunos vídeos de interés:

También os paso el manual de la Dirección General de Carreteras para el proyecto y ejecución de estructuras de suelo reforzado.

Descargar (PDF, 93.29MB)

Referencias:

DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tesis doctoral: Diseño óptimo de estribos abiertos de hormigón armado en puentes de carretera mediante optimización heurística

Ayer 12 de enero de 2016 tuvo lugar la defensa de la tesis doctoral de D. Alejandro José Luz Ivars denominada “Diseño óptimo de estribos abiertos de hormigón armado en puentes de carretera mediante optimización heurística”, dirigida por Fernando González Vidosa y Víctor Yepes Piqueras. La tesis recibió la calificación de “Sobresaliente cum laude” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.

Resumen

La infraestructura de mayor implantación en el territorio es la carretera. Los tramos en puente y en túnel son los más singulares y costosos, aunque los primeros son más numerosos que los segundos. Hoy en día los puentes de paso superior son uno de los más frecuentes en todas las carreteras importantes. El estribo más recomendable y habitual para este tipo de puentes es el abierto porque, se esconde bajo el terraplén, mejorando la visibilidad de los conductores de la vía inferior, y, ahorra materiales respecto al cerrado a partir de una altura de terraplén suficiente. Muchos esfuerzos se han dedicado al cálculo y diseño de los tableros de puente, menos a las pilas, y, aún menos, a los estribos. Esta tesis se ocupa del diseño óptimo de estribos abiertos de hormigón armado en puentes de carretera. Se suma a las investigaciones del Grupo de Investigación, al que pertenece de Procedimientos de la Construcción, Optimización y Análisis de Estructuras (GPRC); que ya ha optimizado tableros (de losa pretensados y de vigas artesa) y pilas (rectangulares huecas), así como, muros, bóvedas y pórticos.

Estribos
Solución de referencia

Los métodos de optimización más antiguos son los exactos, pero se complican mucho y pierden eficiencia cuando el número de variables es muy alto y las condiciones que deben cumplir las soluciones (comprobaciones resistentes de los materiales) no son lineales. Por el contrario, con ayuda de los ordenadores actuales, los métodos heurísticos están en gran auge, permitiendo, con algoritmos sencillos y “mucho coste” computacional, pero en tiempo razonable, resolver de manera automática, problemas tan complejos como los reales, sin simplificaciones, y no solo optimizando el coste como hasta ahora, sino también, otros criterios o, varios a la vez, con gran facilidad. Los estribos óptimos de la tesis se obtienen mediante estos métodos heurísticos y un programa informático que se ha realizado. Están completamente diseñados para ser construidos, y para ello constan de 40 variables discretas. Los estribos no han sido antes tratados en la bibliografía de optimización. Las funciones objetivo son el coste, la seguridad estructural, la constructibilidad y la sostenibilidad ambiental, tanto de forma aislada como por parejas con el coste (con una optimización multiobjetivo híbrida MOSAMO).

Los estribos así obtenidos son diseños óptimos que no han precisado la experiencia previa de un proyectista de estructuras que proponga, como se ha venido haciendo hasta la actualidad, el diseño inicial a comprobar. Si no cumple alguna comprobación resistente (a efectuar, bien manualmente, bien, como actualmente, mediante uno o varios programas informáticos de estructuras), el diseño inicial se retoca ligeramente por el ingeniero mediante un procedimiento de prueba y error. Los programas actuales aún no incluyen rutinas de optimización como el de la tesis. Por ello la bondad del diseño final depende mucho del proyectista que los maneja y de la bibliografía que conoce. La bibliografía sobre el diseño de estribos es escasa y no completa. Este trabajo la amplía aportando las relaciones geométricas, los órdenes de magnitud y los mecanismos resistentes de los estribos óptimos (criterios de predimensionamiento) y los compara con los de la bibliografía y con los de un estribo de referencia ER. Estribo con una altura de 9 m, realmente construido y proyectado por reconocidos ingenieros, respecto al que se han comprobado ahorros económicos superiores al 18% (fundamentalmente en la zapata). Para este ER se ha realizado un estudio paramétrico obteniendo los estribos óptimos con alturas totales entre 6 y 15 m y para tensiones admisibles entre 0,2 y 0,5 MPa.

Se han empleado con éxito algoritmos heurísticos a los estribos de los dos grandes grupos existentes: por un lado, de Búsqueda Secuencial por Entornos o Hill Climbing; y, por otro, de los llamados Algoritmos Poblacionales o Evolutivos; en ambos casos, tanto con soluciones factibles como infactibles. En esta tesis, mediante una nueva propuesta de penalización de la función objetivo, se consiguen, ahorros del 60% en tiempo de cálculo. Los algoritmos empleados se basan en el recocido simulado (SAMO) y en la aceptación por umbrales (TAMO). Son dos algoritmos híbridos de escalada estocástica con operadores de mutación basados en los algoritmos genéticos. Las diferencias entre ellos no son significativas, menores del 0.2%. Con un ordenador Intel Core 2 Quad CPU Q6600 de 2.4 GHz y con 3.24 GB de memoria RAM se consigue la optimización (con penalizaciones altas) en tan solo una ejecución del algoritmo, como novedad frente a otras investigaciones, de 1 h 35’(38’ con ordenador actual). Dentro del segundo grupo se desarrollan dos nuevas heurísticas HSDLS y HSPDLS basadas en Harmony Search e hibridadas con DLS sin y con penalizaciones (y el mismo operador de mutación primer grupo) con las que se consiguen resultados similares pero con tiempos 9 y 6 veces superiores respectivamente.

Tanto la optimización monobjetivo como la multiobjetivo (MO) ponen de manifiesto la equivalencia de optimizar en coste, en CO₂ o en energía con diferencias menores del 1.5%, si bien es, a costa de un elevado número de armaduras pasivas. La optimización MO (coste barras) ofrece un ahorro medio en barras del 78.4% con un incremento medio de los otros tres criterios de 7.85% siendo el ahorro económico respecto ER todavía de un 12,23%.

Solución óptimizada
Solución optimizada

Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica

Resumen: Este artículo se ocupa del diseño automático de estribos abiertos de hormigón armado en puentes de carretera de coste mínimo, empleando para ello dos algoritmos híbridos de escalada estocástica con operadores de mutación basados en los algoritmos genéticos. Los algoritmos empleados se basan en el recocido simulado (SAMO) y en la aceptación por umbrales (TAMO). Ambos algoritmos se aplican a un estribo definido por 40 variables discretas. Se han comprobado ahorros económicos superiores al 18 % respecto a un estribo de referencia de una altura de 9 m realmente construido, con diferencias pequeñas entre ambos algoritmos, del 0,5 % a favor de SAMO. Además, se ha realizado un estudio paramétrico para alturas de estribo entre 6 y 15 m para diferentes tensiones admisibles del terreno que ofrece criterios de predimensionamiento a los proyectistas. Se ha comprobado, además, que el ahorro económico se localiza fundamentalmente en la zapata de estas estructuras.

Palabras clave: Hormigón estructural; optimización heurística; estribos; recocido simulado; aceptación por umbrales; diseño estructural; puentes.

Cómo citar este artículo/Citation: Luz, A., Yepes, V., González-Vidosa, F., Martí, J. V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540): e114, doi: http://dx.doi.org/10.3989/ic.14.089.

Descargar (PDF, 883KB)