Ciclo de trabajo de un equipo de máquinas

Figura 1. Pala sobre neumáticos cargando dúmper. Imagen: V. Yepes

Se denominará ciclo de trabajo, en su sentido más amplio, a la serie de elementos u operaciones elementales que se suceden para realizar completamente una tarea u operación.

Tiempo del ciclo será el invertido en realizar toda la serie de operaciones elementales hasta completar el ciclo, pudiéndose referir a un recurso o a un conjunto de ellos.

 

 

El tiempo del ciclo de una máquina se descompone en varios sumandos:

  1. Tiempo fijo: es la duración de determinadas operaciones que requieren un tiempo determinado como la carga, descarga y maniobras en el caso de una pala cargadora de tierras.
  2. Tiempo variable: es la duración de las operaciones elementales que dependen de determinadas condiciones del trabajo, por ejemplo la distancia en un ciclo de transporte.
  3. Tiempo muerto de inactividad: son tiempos de espera que invierte una máquina en esperar a otra cuando realizan juntas una operación.

Un caso habitual consiste en la utilización de varias máquinas cuyos ciclos individuales de trabajo tienen un intervalo común. Por ejemplo, una cargadora con varios camiones (Figura 1), o bien un equipo de mototraíllas convencionales ayudadas en su carga por un tractor. En estos casos, los ciclos individuales de las máquinas se pueden agrupar formando un ciclo del equipo que se repite periódicamente.

En la Figura 2 se han representado los ciclos de una máquina principal (una cargadora) y los de las máquinas auxiliares a las que sirve (cinco camiones). Se puede observar que, en este caso, la máquina principal presenta un tiempo muerto debido a la falta de un sexto camión. Ello es debido a que el ciclo de la máquina auxiliar no es múltiplo del ciclo de la máquina principal.

Figura 2. Esquema de los ciclos acoplados de máquinas trabajando en equipo. Tiempo muerto en la máquina principal

Siguiendo con este ejemplo, si existiese un sexto camión, la cargadora estaría siempre trabajando mientras que los camiones deberían incorporar un tiempo muerto en su ciclo para que éste sea múltiplo del de la cargadora (Figura 3). En este caso, la producción conjunta sería máxima, el plazo de ejecución mínimo pero el coste por unidad de obra sería mayor.

Figura 3. Esquema de los ciclos acoplados de máquinas trabajando en equipo. Tiempos muertos en las máquinas auxiliares

Al recurso que limita la producción de un equipo se le denomina cuello de botella. Su identificación es esencial porque cualquier cambio introducido en el funcionamiento repercutirá en la capacidad de producción del equipo. En la Figura 2 se representa un equipo donde el cuello de botella son los camiones, mientras que en la Figura 3 lo es la cargadora. El recurso que causa el estrangulamiento es el que determina la producción del equipo. Se define como factor de acoplamiento o “match factor” a la relación entre la máxima producción posible de los equipos auxiliares respecto a la máxima producción posible de los equipos principales. El coste más bajo de producción se obtiene para factores de acoplamiento próximos a la unidad, pero por debajo de ella.

Conociendo los tiempos de los ciclos de las máquinas se puede estimar el número necesario de máquinas principales y auxiliares. En efecto, en una unidad de tiempo, por ejemplo 1 hora, el número total de ciclos Nciclos, p que realizan np máquinas principales será:

donde tp es el tiempo del ciclo de la máquina principal.

Análogamente, en una unidad de tiempo, el número total de ciclos Nciclos,a que realizan na máquinas auxiliares será:

donde ta es el tiempo del ciclo de la máquina auxiliar.

Por tanto, como el número de ciclos que hacen las máquinas principales debe ser igual al número de ciclos que realizan las máquinas auxiliares, entonces

Si existen un total de P tipos distintos de máquinas principales y A de máquinas auxiliares, podemos generalizar a la siguiente expresión:

Os dejo el siguiente vídeo sobre el acoplamiento entre máquinas, que espero os sea de interés.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dúmper sobre orugas

Figura 1. Dúmper sobre orugas Cat Raupentransporter de 30 t. https://www.youtube.com/watch?v=R2a-Eir2pss

El desplazamiento sobre dos carros de orugas supone, para las máquinas de movimiento de tierras, una mayor adherencia al terreno. Es el caso de terrenos embarrados o de baja capacidad portante, donde es necesaria cierta flotabilidad y adherencia y donde los neumáticos no son útiles. Un caso habitual del uso de las orugas son las palas cargadoras, buldóceres, retroexcavadoras, etc.

Las máquinas de acarreo de tierras, como los dúmperes, también pueden montarse sobre orugas. En la Figura 1 se observa un dúmper de gran tamaño, pero también podemos encontrar este tipo de máquinas en trabajos pequeños, donde su diseño compacto permite desplazarse por terrenos accidentados y bordillos (Figura 2).

Figura 2. Dúmper sobre orugas DT05 de Wacker Neuson, para carga útil de 500 kg. https://www.wackerneuson.es/es/productos/dumpers/dumpers-sobre-orugas/

Os dejo algunos vídeos de este tipo de maquinaria, que espero os sean de utilidad.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Dúmperes extraviales rígidos

Dúmper extravial rígido. https://www.cat.com/es_ES/products/new/equipment/off-highway-trucks/off-highway-trucks/18256808.html

Son vehículos de transporte con caja basculante, cuyas características de cargas por eje[1] y dimensiones no le permiten circular por carreteras, circulando por tanto solo dentro de las obras o en explotaciones mineras. Todos sus elementos son robustos, sobre todo la suspensión, eje y bastidor, ya que circulan por pistas en mal estado. Tienen dos ejes, el delantero de dirección y el trasero de tracción, con ruedas gemelas. Necesitan trasladarse de una obra a otra mediante trailers.

Sus dimensiones pueden superar los 8 m. de anchura, 3.000 CV. de potencia y 360 t. de carga útil (el modelo más grande, Belaz 75710, puede llegar hasta 450 t.), aunque las habituales son una carga útil entre 10 y 75 t.[2], una potencia entre 130 y 700 CV. y una anchura máxima entre 2,50 y 5,00 m. Sus taras oscilan entre 7 a 60 t. y la distancia entre ejes varía de 1,15 a 1,95 veces del ancho de la vía. Pueden desplazarse a 50 o 60 km/h en pistas en buen estado, por lo que precisan motores potentes. Su dirección es hidráulica, con radios de giro mínimos y por tanto gran maniobrabilidad, mejor que la de los camiones.

Las cajas, robustas y construidas con aceros especiales de alta resistencia, suele tener su fondo en forma de “V” para bajar el centro de gravedad. Sus ruedas son de gran diámetro y anchura, que le da flotabilidad en terrenos blandos, con dibujos muy profundos y marcados para dar mayor adherencia.


[1]Su peso propio es del orden de 3 a 4 veces superior al de un camión normal, relación tara/carga equivalente a 0,75 mientras que en un camión es de 0,50.

[2]A partir de aquí ya no se usan en ingeniería civil, sino en minería.

Os paso a continuación algunos vídeos para que podáis comprobar el funcionamiento de este tipo de máquinas de acarreo.

 

Bueno, este par de vídeos que os dejo se salen un poco de los procedimientos constructivos:

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

¿Cuánto polvo se emite cuando se carga un dúmper?

Los dúmperes son vehículos de transporte con caja basculante, cuyas características de cargas por eje[1] y dimensiones no le permiten circular por carreteras, circulando por tanto sólo dentro de las obras o en explotaciones mineras. Todos sus elementos son robustos, sobre todo la suspensión, eje y bastidor, ya que circulan por pistas en mal estado. Tienen dos ejes, el delantero de dirección y el trasero de tracción, con ruedas gemelas. Necesitan trasladarse de una obra a otra mediante trailers.

Sus dimensiones pueden llegar a los 8 m de anchura, 3.000 CV de potencia y 250 t de carga útil, aunque las habituales son una carga útil entre 10 y 75 t.[2], una potencia entre 130 y 700 CV. y una anchura máxima entre 2,50 y 5,00 m. Sus taras oscilan entre 7 a 60 t y la distancia entre ejes varía de 1,15 a 1,95 veces del ancho de la vía. Pueden desplazarse a 50 o 60 Km/h en pistas en buen estado, por lo que precisan motores potentes. Su dirección es hidráulica, con radios de giro mínimos y por tanto gran maniobrabilidad, mejor que la de los camiones.

A continuación dejamos un enlace a un objeto de aprendizaje donde nuestros alumnos tratan de entender cómo varían las emisiones de polvo cuando se carga un dúmper, en función del contenido de limo en el material, de la velocidad media del viento a 4 m del suelo, de la altura de descarga, del contenido de humedad del material y de la capacidad de carga del equipo. Espero que os resulte útil. https://laboratoriosvirtuales.upv.es/eslabon/EmisionesCirculacionDumper/

Polvo dúmper


[1]Su peso propio es del orden de 3 a 4 veces superior al de un camión normal, relación tara/carga equivalente a 0,75 mientras que en un camión es de 0,5.

[2]A partir de aquí ya no se usan en ingeniería civil, sino en minería.

Referencias:
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1995). Manual de arranque, carga y transporte en minería a cielo abierto. Ministerio de Industria y Energía.
  • YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

 

Tendencia al gigantismo en la maquinaria de obras públicas y minería

La maquinaria ha cambiado rápidamente con las innovaciones tecnológicas. Se ha derivado hacia la especialización, evolucionando unas hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. En otros casos se ha buscado la polivalencia del trabajo en equipos pequeños y medianos. Los medios informáticos han auxiliado y mejorado los sistemas de los equipos. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad.

Como muestra de la tendencia al gigantismo en la maquinaria de ingeniería civil y minería, os paso un pequeño documental donde se muestran brevemente estas megamáquinas. Espero que os guste.

Os paso ejemplos de máquinas gigantes. La grúa torre Kroll K-10000 es la más grande del mundo. Fue fabricada por la marca danesa Kroll y es capaz de levantar pesos de 132 toneladas de carga máxima y 91 toneladas a una distancia máxima de 100 m.

El Bulldozer D575A-3SD tiene casi 5 metros de altura y fue diseñado y fabricado en Japón. Esta potente máquina rebasa los 12 m de ancho y puede mover más de 215 toneladas de una sola vez.

La Bagger 288, es una excavadora giratoria empleada fundamentalmente en trabajos de minería. Una vez entró en funcionamiento, se convirtió en el vehículo de carga sobre tierra firme más grande del mundo. Mide 220 metros de largo, 96 de alto y 46 de ancho.

El BelAZ 75710 pesa 810 toneladas, 210 toneladas más que el Caterpillar, y tiene una capacidad de carga de 450 toneladas. Cuenta con dos motores turbodiésel de 16 cilindros asociados que generan 4.600 caballos con un par máximo de 18.626 Nm.

La motoniveladora ACCO se considera la mayor motoniveladora del mundo. Esta máquina pesa unas 200 toneladas y contiene dos motores Caterpillar, uno de 1000 CV en la parte trasera y otro de 700 CV en la parte delantera, la cual pertenece a la cabeza tractora de una mototraílla Caterpillar 657. La hoja o cuchilla posee una longitud de 10 m.

 

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

¿Cuánto polvo levanta un dúmper al circular por una pista sin pavimentar?

En un artículo reciente hemos analizado las emisiones de polvo producidas al cargar un dúmper. Siguiendo esa línea os pasamos ahora un objeto de aprendizaje similar en el que se analiza el polvo que se levanta al circular un dúmper por una pista sin pavimentar. Este objeto está pensado para que nuestros alumnos traten de entender cómo varían las emisiones de polvo cuando un dúmper circula por una pista sin pavimentar, en función del contenido de limo en el material de la superficie de rodadura, de la velocidad y peso medio del dúmper, del número de neumáticos y del número de días secos anuales.  Espero que os resulte útil. https://laboratoriosvirtuales.upv.es/eslabon/Ejercicio?do=EmisionesCirculacionDumper
Referencias: