Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 8.18MB)

Interacción suelo-estructura en el diseño óptimo de pórticos de edificación

Hemos presentado en la 7th International Conference on Mechanical Models in Structural Engineering una comunicación sobre la implementación de un modelo que considere la interacción entre el suelo y la estructura (SSI) en el diseño óptimo de pórticos de hormigón armado en edificación. El trabajo propone una metodología para simular la interacción suelo-estructura en los procesos de optimización estructural, utilizando un modelo tipo Winkler que considera la deformación adicional de la superestructura durante la carga, lo que conduce a diseños sostenibles más eficientes y duraderos. El objetivo es crear un escenario más realista considerando el asentamiento del suelo y su influencia en el coeficiente de rigidez, que no se tiene en cuenta en los métodos tradicionales de soportes rígidos o articulados, lo que lleva a un diseño de superestructura ineficiente. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El estudio compara los diseños optimizados de las estructuras con los soportes clásicos (métodos tradicionales) y el modelo sugerido, lo que demuestra la influencia de considerar la interacción entre el suelo y la estructura en la eficiencia del diseño de la superestructura. Los resultados muestran que el uso de soportes tradicionales conduce a diseños ineficientes, lo que pone de relieve la necesidad de modelos más realistas que tengan en cuenta esta interacción.

El documento también analiza el comportamiento de los diferentes tipos de suelo y cómo se refleja en el modelo propuesto. Considera tanto los suelos cohesivos como los granulares, destacando los asentamientos diferenciales y las tensiones adicionales que se producen en los modelos con interacción, y que no ocurren en los modelos con soportes rígidos.

Los resultados de este estudio se pueden resumir de la siguiente forma:

  • Los diseños optimizados de los modelos con interacción generan más emisiones que los modelos tradicionales, lo que indica que la superestructura de los modelos que consideran el SSI está más estresada. Sin embargo, esto no significa que no tener en cuenta la interacción sea más beneficioso.
  • Las estructuras con soportes rígidos requieren menos material en la superestructura, pues están menos estresadas, pero no reflejan los asentamientos diferenciales que existen en la práctica.
  • Los suelos granulares son más propensos a los asientos diferenciales, y el aumento de la curvatura resultante de los asientos diferenciales afecta más a las columnas que a las vigas.
  • Las diferencias más significativas entre los modelos con SSI y los modelos con soportes clásicos se observan en el estudio de caso en el que la carga axial que llega a los cimientos es mayor debido a un nivel adicional, lo que agudiza el fenómeno del asiento diferencial.
  • Los resultados demuestran la influencia del SSI en la eficiencia del diseño de la superestructura, y destacan la necesidad de modelos más realistas que tengan en cuenta el SSI para diseños sostenibles más eficientes y duraderos.

Abstract:

This paper proposes a methodology to simulate the soil-structure interaction (SSI) in structural optimization processes. The aim is to create a scenario more aligned with reality, which is not reflected in the traditional methods of considering perfectly rigid or articulated supports. A Winkler-type model is proposed where a hyperbolic equation that relates the pressure p with the settlement S is used to calculate the stiffness coefficient k. This coefficient simulates the interaction that causes additional deformation of the superstructure during the loading process, increasing internal forces. Several reinforced concrete frame structures with traditional rigid supports and the proposed SSI model are optimized to demonstrate the influence of this phenomenon. The results show that using traditional supports, as is commonly done, leads to inefficient superstructure design. Therefore, the proposed methodology is conducive to creating more realistic models that allow for more efficient and durable sustainable designs.

Keywords:

Soil-structure interaction; reinforced concrete; frame structure; optimization; Winkler model.

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Model for considering soil-structure interaction and its implementation in the optimal design of RC frame structures. 7th International Conference on Mechanical Models in Structural Engineering, CMMoST 2023. 29 nov – 01 dec, Málaga (Spain).

Descargar (PDF, 523KB)