Constructibilidad para la optimización en BIM y gemelos híbridos digitales

En otros artículos anteriores ya hemos hablado de la computación cuántica y los gemelos híbridos digitales en ingeniería civil y edificación. Ahora os paso una comunicación que hicimos en el EAAE-ARCC International Conference que se celebró en Valencia el verano pasado, organizado por la Universitat Politècnica de València.

La introducción de los estándares de Lean Construction en la industria de la construcción ha cambiado la forma en que los profesionales abordan los problemas. El BIM y los gemelos digitales híbridos son nuevas tecnologías que mejoran la eficiencia de los procedimientos del sector. Los algoritmos de optimización se utilizan a menudo en combinación con estas técnicas para mejorar el resultado en varios puntos de la fase de diseño, incluyendo el proyecto estructural. La optimización puede realizarse utilizando diferentes criterios, como la economía, la sostenibilidad, el consumo de energía o la constructibilidad o una combinación entre ellos. Aunque existen fórmulas exactas para cuantificar algunos de estos criterios, no existe una universal para cuantificar la constructibilidad. En este artículo, establecemos los puntos clave para crear un criterio de constructibilidad para cada proyecto estructural y explorar su eficiencia. La forma de cuantificar la constructibilidad depende del diseño estructural y del elemento a optimizar y como no existe una fórmula exacta para cuantificarla se han definido los diferentes factores que influyen en ella y se han explorado sus combinaciones para un determinado problema estructural: la optimización de una viga de hormigón. Con ello, se consigue cuantificar la facilidad para construir un determinado proyecto estructural y reducir el tiempo de construcción y el coste de las cuadrillas y crear una forma de mejorar el diseño estructural. Este método expuesto puede ampliarse luego a diferentes elementos estructurales.

Referencia:

FERNÁNDEZ-MORA, V.; YEPES, V. (2020). Constructability criterion for structural optimization in BIM and Hybrid Digital Twins. EAAE-ARCC International Conference, June, 10-13, Valencia, 8 pp. DOI: http://dx.doi.org/10.4995/EAAE-ARCC-IC-2020.2020.XXXX

Descargar (PDF, 368KB)

Método de redes bayesianas para la toma de decisiones respecto a la sostenibilidad social de los proyectos de infraestructura

Acaban de publicarnos en la revista Journal of Cleaner Production un artículo donde aplicamos el método de las redes bayesianas aplicado a la toma de decisiones relacionadas con la sostenibilidad social de los proyectos. El Journal of Cleaner Production es revista de fuerte impacto, pues se encuentra en el primer decil en el ámbito ENVIRONMENTAL SCIENCES de la Web of Science. Os dejo a continuación el resumen y el enlace al artículo por si os resulta de interés: https://www.sciencedirect.com/science/article/pii/S0959652617330998 

ABSTRACT:

Nowadays, sustainability assessment tends to focus on the biophysical and economic aspects of the built environment. The social aspects are generally overestimated during an infrastructure evaluation. This study proposes a method to optimize infrastructure projects by assessing their social contribution. This proposal takes into account the infrastructure’s interactions with the local environment in terms of its potential contribution in the short and long term. The method is structured in three stages: (1) preparation of a decision-making model, (2) formulation of the model, and (3) implementation of the model through optimization of infrastructure projects from the social sustainability viewpoint. The theory of Bayesian reasoning and a harmony search optimization algorithm are used to carry out the research. The paper presents the application to a case study of a set of alternatives for road infrastructure projects in El Salvador. This approach creates a model of participative decision-making. The results show that the method can distinguish socially efficient alternatives from the short and long-term contributions. In addition, the results suggest that some variables are less sensitive to the short and long-term maximization, while others vary their values to improve one objective or the other. The findings are directly applied to a real case. The method can be employed in the infrastructure formulation and prioritization phases and complemented with economic and environmental sustainability assessments.

KEYWORDS:

Bayesian networks, Infrastructure, Multiple criteria, Optimization algorithm, Social sustainability

Reference:

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140

A continuación os dejo la versión autor:

Descargar (PDF, 557KB)