Hacia un mapa de conocimiento algorítmico de optimización de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial)

Acaban de publicarnos un artículo en la revista IEEE Access, revista de alto impacto indexada en el JCR. En este caso se ha realizado un análisis conceptual macroscópico de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial). El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la arquitectura, la ingeniería y la construcción (AEC) constituye uno de los sectores productivos más relevantes, por lo que también produce un alto impacto en los equilibrios económicos, la estabilidad de la sociedad y los desafíos globales en el cambio climático. En cuanto a su adopción de tecnologías, aplicaciones y procesos también se reconoce por su status-quo, su lento ritmo de innovación, y los enfoques conservadores. Sin embargo, una nueva era tecnológica -la Industria 4.0 alimentada por la IA- está impulsando los sectores productivos en un panorama sociopolítico y de competencia tecnológica global altamente presionado. En este trabajo, desarrollamos un enfoque adaptativo para la minería de contenido textual en el corpus de investigación de la literatura relacionada con las industrias de la AEC y la IA (AEC-AI), en particular en su relación con los procesos y aplicaciones tecnológicas. Presentamos un enfoque de primera etapa para una evaluación adaptativa de los algoritmos de IA, para formar una plataforma integradora de IA en la industria AEC, la industria AEC-AI 4.0. En esta etapa, se despliega un método adaptativo macroscópico para caracterizar la “Optimización”, un término clave en la industria AEC-AI, utilizando una metodología mixta que incorpora el aprendizaje automático y el proceso de evaluación clásico. Nuestros resultados muestran que el uso eficaz de los metadatos, las consultas de búsqueda restringidas y el conocimiento del dominio permiten obtener una evaluación macroscópica del concepto objetivo. Esto permite la extracción de un mapeo de alto nivel y la caracterización de la estructura conceptual del corpus bibliográfico. Los resultados son comparables, a este nivel, a las metodologías clásicas de revisión de la literatura. Además, nuestro método está diseñado para una evaluación adaptativa que permita incorporar otras etapas.

Abstract:

The Architecture, Engineering, and Construction (AEC) Industry is one of the most important productive sectors, hence also produce a high impact on the economic balances, societal stability, and global challenges in climate change. Regarding its adoption of technologies, applications and processes is also recognized by its status-quo, its slow innovation pace, and the conservative approaches. However, a new technological era – Industry 4.0 fueled by AI- is driving productive sectors in a highly pressurized global technological competition and sociopolitical landscape. In this paper, we develop an adaptive approach to mining text content in the literature research corpus related to the AEC and AI (AEC-AI) industries, in particular on its relation to technological processes and applications. We present a first stage approach to an adaptive assessment of AI algorithms, to form an integrative AI platform in the AEC industry, the AEC-AI industry 4.0. At this stage, a macroscopic adaptive method is deployed to characterize “Optimization,” a key term in AEC-AI industry, using a mixed methodology incorporating machine learning and classical evaluation process. Our results show that effective use of metadata, constrained search queries, and domain knowledge allows getting a macroscopic assessment of the target concept. This allows the extraction of a high-level mapping and conceptual structure characterization of the literature corpus. The results are comparable, at this level, to classical methodologies for the literature review. In addition, our method is designed for an adaptive assessment to incorporate further stages.

Keywords:

Architecture, engineering and construction, AEC, artificial intelligence, literature corpus, machine learning, optimization algorithms, knowledge mapping and structure

Reference:

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

Descargar (PDF, 6.14MB)

Special Issue “New Trends in Smart Construction Education and Research”

J Multidisciplinary Scientific Journal (ISSN 2571-8800) is a peer-reviewed, open access journal on all natural and applied sciences published quarterly online by MDPI. The goal of this journal is to improve dissemination of new research results and ideas, and to allow research groups to build new studies, innovations and knowledge.

  • Open Access— free for readers, free to re-use.
  • High Visibility: indexed within FSTACAPlus / SciFinder, and many other databases.
  • Recognition of reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.

Special Issue “New Trends in Smart Construction Education and Research”

Deadline for manuscript submissions: 31 December 2021.

Special Issue Editor

Prof. Dr. Víctor Yepes Website

Guest Editor

Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 València, Spain
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

University education related to architecture, engineering and construction is changing rapidly, especially in these challenging times of the COVID-19 pandemic. Methodologies are changing: competency-based education is being imposed, online teaching, and affecting active participation of students in the learning process, among others. In fact, the education provided today at universities should be the basis for future graduates to be able to practice their profession in the coming decades. It cannot, therefore, be taught the same as it has been taught for the last 50 years.

In this educational context, the concept of “smart construction” takes on special importance. It is a concept that is associated with digital design, information and communication technologies, artificial intelligence, BIM, Lean Construction, prefabrication, drones, robotization, the Internet of Things and automation, innovation and sustainability, among many other concepts. Among these concepts, one that particularly interests me is the association with new construction methods (a term that includes new products and new construction procedures). They aim to improve business efficiency, quality, customer satisfaction, environmental performance, sustainability and predictability of delivery times. Therefore, modern construction methods are more than just a particular focus on the product. They engage people to seek improvements, through better processes, in construction delivery and execution. For all this technological revolution to be possible, it is essential to change the current educational methods in universities, especially in those engineering studies related to the field of construction. The challenge is twofold: on the one hand, to teach those trends in smart construction that will become a reality in the coming years and, on the other hand, to change the way of teaching at the university, adapting to these new technologies.

This Special Issue aims at promoting original and high-quality papers on new trends in Architecture, Engineering and Education from a multidisciplinary perspective. In particular, the Special Issue seeks to collect best educational practices, innovations in the learning process, problem- and project-based education, collaborative learning, etc. It is about collecting the trends towards which university education related to the world of construction is heading.

We cordially invite you to submit a high-quality original research paper or review to this Special Issue,“ New Trends in Smart Construction Education and Research”.

Prof. Dr. Víctor Yepes
Guest Editor

 

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. J is an international peer-reviewed open access quarterly journal published by MDPI.

Keywords

  • university education
  • collaborative learning
  • online teaching
  • new educational technologies
  • engineering and architecture
  • COVID-19
  • smart construction
  • lean construction
  • BIM
  • sustainability