¿Cuáles son las características de una buena estimación de costes?

En la ingeniería o la arquitectura, la estimación de costes no constituye únicamente una labor técnica, sino que representa un componente esencial en la planificación, gestión y toma de decisiones de todo proyecto. Ya sea para la construcción de una presa, una carretera o una infraestructura ferroviaria, es fundamental contar con una estimación precisa, bien fundamentada y comunicada adecuadamente, ya que esto puede marcar la diferencia entre el éxito y el fracaso de una iniciativa. En el presente artículo, se aborda la evaluación de las competencias que constituyen una estimación de costes sólida y conforme a las normas profesionales y las prácticas óptimas del sector.

Una estimación de costes sólida y confiable debe cumplir con cuatro características relevantes: exhaustividad, razonabilidad, credibilidad y solidez analítica. Estos principios aseguran que el análisis sea riguroso desde el punto de vista técnico, así como útil y comprensible para quienes toman decisiones.

En primer lugar, toda estimación sólida debe basarse en el rendimiento histórico de programas anteriores. Por lo tanto, es necesario utilizar datos de proyectos análogos como referencia, ya sean similares en alcance, naturaleza o contexto, para respaldar el análisis. Estas experiencias previas deben estar claramente identificadas como fuentes de datos, aportando así transparencia y reforzando la confianza en los resultados.

Sin embargo, si bien los datos históricos constituyen el punto de partida, es imperativo considerar las posibles mejoras en diseño, materiales y procesos constructivos que puedan incorporarse en el nuevo proyecto. A pesar de la ausencia de datos empíricos que respalden estos avances, es necesario evaluar su impacto de manera rigurosa y fundamentada. En tales circunstancias, se acude al juicio profesional o conocimiento experto (también denominado subject matter expertise), cuya aplicación debe estar debidamente documentada y justificada.

Otro aspecto clave es la claridad en la comunicación. Una estimación sólida debe ser comprensible, especialmente para los responsables de programas y directivos que, si bien toman decisiones estratégicas, pueden carecer del tiempo o del perfil técnico necesario para profundizar en los detalles metodológicos. Por ello, se recomienda optar por enfoques sencillos, evitando complejidades innecesarias, para que la estimación pueda ser fácilmente interpretada por sus destinatarios.

Asimismo, es preciso identificar las reglas de base y los supuestos. Como se suele decir en el ámbito del análisis: «Permítame realizar las suposiciones, y usted podrá realizar los cálculos». Esta frase resume la enorme influencia que tienen las hipótesis en cualquier estimación. Si bien es difícil que todos los agentes implicados compartan exactamente los mismos supuestos, la mejor estrategia consiste en incorporar análisis de sensibilidad. Estos instrumentos permiten evaluar la variación de la estimación ante diferentes escenarios y contribuyen a una gestión más eficiente de la incertidumbre.

Precisamente, una buena estimación debe abordar de forma explícita los riesgos y las incertidumbres inherentes al proyecto. Si bien el resultado final se manifiesta a través de una cifra concreta —conocida como «punto estimado»—, es importante destacar que dicha cifra es el resultado de una serie de supuestos. Por lo tanto, es posible que esta haya variado si los supuestos hubiesen sido distintos. Por tanto, es esencial señalar las sensibilidades del modelo y mostrar cómo afectan al resultado final, para ofrecer una visión más completa y realista del coste previsto.

Desde una perspectiva técnica, existen otras cualidades que refuerzan la validez y utilidad de la estimación. Una de las características esenciales que debe cumplir es que esté impulsada por los requisitos del proyecto. Resulta improcedente solicitar una estimación del coste de rehabilitar una cocina sin definir previamente el alcance de dicha rehabilitación. En el ámbito de los proyectos civiles de gran envergadura, resulta imperativo que los requisitos funcionales y técnicos se encuentren debidamente documentados, ya sea a través de especificaciones técnicas, documentos de alcance, solicitudes de propuesta (RFP) o, en el caso de proyectos públicos, mediante instrumentos normalizados como el «Cost Analysis Requirements Description» (CARD).

Otra condición esencial es que el proyecto esté suficientemente definido desde el punto de vista técnico y que se hayan identificado las áreas de mayor riesgo. De este modo, se garantizará una selección meticulosa de la metodología de estimación más apropiada y una aplicación precisa de las herramientas de análisis.

En proyectos de gran envergadura, especialmente en el ámbito público, se recomienda disponer de una estimación independiente. Esta función de validación externa contribuye a reforzar la credibilidad del análisis. De igual manera, es importante contar con estimaciones independientes que respalden los presupuestos en los grandes proyectos.

Finalmente, una estimación de calidad debe ser trazable y auditable. Por lo tanto, es imperativo que sea posible reconstruirla a partir de los datos, supuestos y fuentes utilizadas. Existe un consenso tácito entre los profesionales de la estimación, según el cual cualquier individuo con conocimientos básicos de análisis cuantitativo debería estar en condiciones de seguir los pasos del cálculo, aplicar los datos y reproducir el resultado. La transparencia, por tanto, no es solo un valor añadido, sino un requisito indispensable para asegurar la fiabilidad del proceso.

En el ámbito de la ingeniería civil, donde los proyectos conllevan frecuentemente inversiones significativas y pueden afectar a miles de personas, la estimación de costes deja de ser una tarea secundaria para convertirse en una herramienta estratégica esencial. El cálculo de cifras por sí solo no es suficiente; es imperativo comprender el proyecto en su totalidad, anticipar escenarios, comunicar con claridad y tomar decisiones con fundamento.

Invito a todas las personas —ya sean profesionales con experiencia o estudiantes en proceso de formación— a considerar la estimación de costes no como un mero trámite técnico, sino como una disciplina que integra ciencia, experiencia y criterio. Reflexionar sobre el proceso de construcción de nuestras estimaciones, los supuestos que las sustentan y la manera en que las comunicamos, puede resultar fundamental para mejorar la eficiencia, la transparencia y la sostenibilidad de nuestras infraestructuras.

Glosario de términos clave

  • Estimación de costes: Proceso de predecir el coste monetario de un proyecto o iniciativa, basándose en datos disponibles, supuestos y metodologías de análisis.
  • Exhaustividad: Característica de una estimación que implica considerar todos los elementos relevantes del proyecto y sus posibles costes asociados.
  • Razonabilidad: Característica que indica que la estimación está lógicamente estructurada y los valores utilizados tienen sentido dentro del contexto del proyecto y la experiencia previa.
  • Credibilidad: Característica que denota la confianza en la estimación, basada en la solidez de la metodología, la transparencia en los datos y supuestos, y la validación (interna o externa).
  • Solidez analítica: Característica que se refiere a que la estimación se basa en métodos de análisis cuantitativos rigurosos y bien aplicados.
  • Rendimiento histórico: Datos de coste y ejecución de proyectos anteriores similares que se utilizan como base empírica para una nueva estimación.
  • Juicio profesional (o conocimiento experto): Aplicación de la experiencia y conocimiento de expertos en la materia para realizar estimaciones o tomar decisiones cuando los datos empíricos son limitados.
  • Reglas de base y supuestos: Las hipótesis fundamentales y las condiciones iniciales que subyacen a una estimación y sobre las cuales se realizan los cálculos.
  • Análisis de sensibilidad: Técnica que evalúa cómo varía el resultado de una estimación cuando se modifican los supuestos o parámetros clave, ayudando a entender el impacto de la incertidumbre.
  • Punto estimado: La cifra única que representa el resultado más probable o esperado de la estimación de costes.
  • Requisitos del proyecto: Las especificaciones funcionales, técnicas y de rendimiento que definen el alcance y los objetivos de un proyecto, y que deben impulsar la estimación de costes.
  • Cost Analysis Requirements Description (CARD): Instrumento normalizado, especialmente en proyectos públicos, que documenta los requisitos necesarios para realizar un análisis de costes.
  • Estimación independiente: Una estimación de costes realizada por un equipo o entidad separada del equipo principal del proyecto, con el fin de validar o contrastar la estimación principal.
  • Trazabilidad: La capacidad de seguir y documentar el proceso de estimación, desde los datos y supuestos iniciales hasta el resultado final.
  • Auditabilidad: La capacidad de verificar la exactitud y fiabilidad de una estimación, examinando los datos, métodos y supuestos utilizados, de modo que otro analista pueda reproducirla.

Referencias:

Mislick, G. K., & Nussbaum, D. A. (2015). Cost estimation: Methods and tools. John Wiley & Sons.

Yepes, V. (2022). Gestión de costes y producción de maquinaria de construcción. Universidad Politécnica de Valencia.

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Norma ISO 15686-5 sobre los costes del ciclo de vida de edificios y construcciones

https://blog.deltoroantunez.com/2024/02/calculo-ciclo-vida-construccion.html

La norma ISO 15686-5 proporciona un marco completo para planificar la vida útil de los edificios y construcciones, y para calcular su coste total a lo largo de su vida útil. Establece los principios rectores, las definiciones y las instrucciones necesarias para realizar predicciones coherentes del CCV y evaluaciones del rendimiento a lo largo de la vida útil del activo.

La versión actual de 2017 se centra en establecer directrices claras y detalladas para llevar a cabo análisis de costes del ciclo de vida (LCC, por sus siglas en inglés). Este enfoque permite evaluar de manera sistemática los costes asociados a un activo desde su adquisición hasta su disposición final. Además, la norma contempla la posibilidad de incluir ingresos generados y externalidades que puedan influir en la evaluación económica. Al promover la utilización de metodologías estandarizadas, se garantiza la coherencia de los resultados y se establece una base sólida para la toma de decisiones fundamentadas.

La norma también hace hincapié en la utilidad del LCC para comparar diferentes alternativas de diseño y construcción, y permite a los gestores identificar opciones que optimicen tanto los costes iniciales como los recurrentes a lo largo del tiempo. Las metodologías propuestas son aplicables a nivel de cartera, proyectos específicos o componentes individuales, dependiendo del alcance definido.

Alcance y objetivos de la norma

La norma establece los requisitos para identificar y evaluar todos los costes relevantes a lo largo del ciclo de vida de un activo construido. Esto incluye desde los costes iniciales de adquisición hasta los relacionados con la operación, el mantenimiento, la sustitución de componentes y la disposición final. Además, abarca los siguientes aspectos:

  • Consideración de variables económicas, como tasas de descuento, inflación y fluctuaciones en los precios.
  • Evaluación de la sostenibilidad económica y ambiental mediante la inclusión de externalidades.
  • Provisión de un marco que facilite la comparación de alternativas en términos de coste total y rendimiento a largo plazo.

La norma es particularmente útil en contextos donde los periodos de análisis pueden extenderse por décadas, como en edificios públicos o activos con vidas útiles prolongadas.

Principios fundamentales del LCC

El análisis del ciclo de vida tiene como objetivo proporcionar una evaluación detallada y cuantitativa de los costes asociados a un activo construido para apoyar la toma de decisiones estratégicas en cada etapa del proyecto. Algunos de los principios clave son los siguientes:

  1. Identificación integral de costes: El LCC tiene en cuenta todos los costes relevantes, tanto directos como indirectos y externalidades, para garantizar que no se pasen por alto factores críticos.
  2. Proyecciones realistas: Se incorporan tasas de descuento, inflación y cambios previstos en las tecnologías para obtener estimaciones precisas y adaptadas al contexto.
  3. Flexibilidad en el alcance: Permite adaptarse a diferentes niveles de análisis, desde el global hasta el nivel de componentes individuales.
  4. Apoyo en la toma de decisiones: Proporciona datos útiles para comparar alternativas y seleccionar opciones que maximicen el rendimiento económico y funcional.

Detalle de las variables de coste

La norma especifica que el análisis LCC debe abordar una amplia gama de costes, agrupados en las siguientes categorías:

  • Costes de adquisición: Incluyen los gastos iniciales asociados con la compra, el diseño, la adaptación, las aprobaciones regulatorias, la construcción y la puesta en marcha. Estos costes suelen representar la mayor parte de la inversión inicial.
  • Costes operativos: Gastos recurrentes relacionados con la administración, los seguros, la energía, los servicios públicos y las tasas. Representan un componente significativo a lo largo de la vida útil del activo.
  • Costes de mantenimiento: Comprenden actividades preventivas, correctivas y diferidas, así como inspecciones periódicas. Estos costes son esenciales para garantizar el funcionamiento del activo conforme a los requisitos establecidos.
  • Costes de reemplazo: Relacionados con la sustitución de componentes o sistemas importantes. Estos costes pueden variar significativamente según el tipo de activo y las condiciones de operación.
  • Costes de eliminación: Incluyen demoliciones, reciclaje, reutilización de materiales y eliminación de desechos. Este componente también puede generar ingresos por la venta de materiales recuperables.

Aplicación práctica del LCC

La norma describe cómo el LCC puede integrarse en diversas etapas del ciclo de vida del proyecto:

  1. Planificación inicial: en esta fase se llevan a cabo evaluaciones estratégicas para determinar la viabilidad de diferentes opciones de adquisición o desarrollo de activos. Se tienen en cuenta factores como la duración prevista de uso y los requisitos del cliente.
  2. Diseño y construcción: durante esta etapa, el LCC ayuda a seleccionar materiales, tecnologías y diseños que optimicen los costes futuros. Hasta el 80 % de los costes de operación y mantenimiento pueden definirse en esta fase.
  3. Operación y mantenimiento: el análisis LCC permite gestionar de manera eficiente los recursos y planificar el mantenimiento necesario para prolongar la vida útil del activo.
  4. Disposición final: se evalúan los costes e ingresos asociados al final de la vida útil del activo, incluyendo el reciclaje o la reutilización de componentes.

Metodologías recomendadas

La metodología descrita en la norma ISO 15686-5 hace hincapié en un enfoque sistemático para la asignación de recursos, centrándose en su uso eficiente para alcanzar los objetivos de la organización. Este marco ayuda a evaluar los distintos procesos de asignación empleados por diversas organizaciones y facilita debates estructurados sobre cuestiones relacionadas con los recursos. La naturaleza iterativa del proceso permite la mejora continua y permite a los responsables de la toma de decisiones reevaluar sus estrategias en función de los datos y resultados que vayan surgiendo.

Para abordar las incertidumbres inherentes al análisis a largo plazo, la norma recomienda técnicas como:

  • Análisis de sensibilidad: Permite evaluar cómo los cambios en variables clave afectan los resultados.
  • Método Monte Carlo: Simula diferentes escenarios para estimar rangos de coste probables.
  • Valor actual neto (VAN): Proporciona una base para comparar los costes futuros en términos de su valor actual.

Beneficios del LCC en la toma de decisiones

El cálculo del coste del ciclo de vida (CCV) proporciona una evaluación económica sistemática de los costes de un activo a lo largo de todo su ciclo de vida, que abarca las fases de adquisición, explotación y eliminación. Esta metodología facilita la toma de decisiones informadas, ya que permite a las partes interesadas comprender no solo los costes de transacción iniciales, sino también las implicaciones financieras más amplias asociadas al activo a lo largo del tiempo, incluidos los costes y beneficios externos derivados de su uso.

La aplicación del cálculo del coste del ciclo de vida puede reportar importantes beneficios económicos. Las investigaciones indican que las organizaciones que utilizan normas para el análisis del CCV han obtenido ganancias valoradas entre el 0,15 % y el 5 % de los ingresos anuales por ventas. Estos ahorros se deben a una mejor asignación de recursos y a una mayor eficiencia operativa que surgen de la adopción de decisiones de inversión informadas. Por ejemplo, la identificación de externalidades potenciales, tanto positivas como negativas, puede dar lugar a un enfoque más holístico de la planificación financiera y la gestión de activos, lo que mejora en última instancia los resultados de la organización.

El uso del LCC aporta claridad y respaldo cuantitativo en la selección de alternativas. Esto es particularmente relevante en decisiones de inversión, donde el equilibrio entre costes iniciales y operativos es fundamental. Además, este enfoque fomenta la adopción de estrategias sostenibles al permitir una evaluación integral de los impactos económicos y ambientales.

Conclusión

La norma ISO 15686-5:2017 es una herramienta esencial para optimizar la gestión económica de los activos construidos. Al abordar con detalle todos los costes asociados y proporcionar metodologías claras para su análisis, esta norma permite una gestión más eficiente, sostenible y alineada con los objetivos a largo plazo. Su aplicación garantiza que cada etapa del ciclo de vida de un activo se considere y gestione de manera óptima.

Referencias:

Cadenazzi, T., Rossini, M., Nolan, S., Dotelli, G., Arrigoni, A., & Nanni, A. (2018). Resilience and economical sustainability of a FRP reinforced concrete bridge in Florida: LCC analysis at the design stage. In Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision (pp. 2913-2920). CRC Press.

Guaygua, B., Sánchez-Garrido, A., & Yepes, V. (2024). Life cycle assessment of seismic resistant prefabricated modular buildings. Heliyon, 10(20), e39458.

Kuda, F., & Berankova, E. W. (2014). EU Approaches to Unification of Methodologies for Determination of Building Object Life Cycle Costing. Advanced Materials Research1044, 1863-1867.

Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34.

Pons, J. J., Villalba Sanchis, I., Insa Franco, R., & Yepes, V. (2020). Life cycle assessment of railway track substructures: Comparison of ballast and ballastless rail tracks. Environmental Impact Assessment Review, 85, 106444.

Teichmann, M., Szeligova, N., & Kuda, F. (2019). Evaluation of operating costs in the life cycle of buildings. In Advances and Trends in Engineering Sciences and Technologies III (pp. 629-635). CRC Press.

Villalba, P., Sánchez-Garrido, A., & Yepes, V. (2024). Life cycle evaluation of seismic retrofit alternatives for reinforced concrete columns. Journal of Cleaner Production, 455, 142290.

Xie, H., Cui, Q., & Li, Y. (2022). Net Present Value Method: A Method Recommended by ISO 15686-5 for Economic Evaluation of Building Life Cycle Costs. World Journal of Engineering and Technology10(2), 224-229.