Tenemos el placer de anunciar la publicación de un artículo en la revista Computers & Industrial Engineering, revista indexada en el primer cuartil del JCR. Se trata de una colaboración con colegas de Turquía, en especial con el profesor Vedat Toğan.
El artículo analiza si la integración de Graph Attention Networks (GAT) con metodologías multicriterio de toma de decisiones (MCDM) mejora la precisión y fiabilidad en la selección de proyectos de inversión en ingeniería de la construcción. La cuestión central es si los modelos de aprendizaje automático basados en redes superan a los métodos MCDM tradicionales a la hora de predecir la viabilidad de proyectos de inversión. Esta pregunta define el problema de la ineficacia en la selección de proyectos debido a la complejidad de los factores interdependientes y orienta el estudio hacia la evaluación de modelos predictivos basados en redes.
Metodología
El estudio emplea un enfoque híbrido que combina el juicio experto, los métodos MCDM y el aprendizaje automático avanzado. Se procesa un conjunto de datos de más de 33 000 proyectos de inversión en construcción, aplicando la selección de características mediante análisis de componentes principales (PCA) y la clasificación basada en criterios como el riesgo país, la calificación de desarrollo empresarial y el valor del proyecto. A partir de estos datos, se estructuran tres redes de inversión: regional, nacional y basada en el modo de financiación. Estas redes se introducen en modelos GAT, que aplican mecanismos de atención para predecir la viabilidad de la inversión. La validación del modelo se realiza mediante métricas de precisión, exhaustividad, puntuación F1 y curvas ROC, y se compara con árboles de decisión y modelos de bosque aleatorio.
Contribuciones relevantes
- Integración de aprendizaje automático y MCDM: El estudio demuestra cómo los GATs pueden mejorar la precisión en la selección de proyectos, combinando métodos MCDM y aprendizaje profundo.
- Desarrollo de modelos de inversión basados en redes: Se estructuran los datos de inversión en tres redes diferenciadas, proporcionando un marco novedoso para evaluar interdependencias entre proyectos.
- Validación de la eficacia de los GATs: Se logra una precisión superior al 99 % en la red regional y superior al 98 % en las redes nacionales y de financiación, destacando el potencial de los GATs en la planificación estratégica de inversiones.
- Aplicabilidad práctica en la toma de decisiones: Se demuestra la viabilidad de los GATs para mejorar herramientas de apoyo a la decisión en inversiones a gran escala, reduciendo riesgos financieros.
Discusión de resultados
Los modelos GAT basados en redes mejoran significativamente la precisión en la selección de proyectos de inversión en comparación con los métodos MCDM convencionales. La red regional es la que logra una mayor precisión, lo que sugiere que la agregación geográfica proporciona una base sólida para la toma de decisiones. Las redes nacionales y de financiación, aunque con una precisión ligeramente menor, siguen superando a los métodos tradicionales, lo que demuestra las ventajas del modelado de dependencias basadas en redes.
Las tasas de error, aunque mínimas, resaltan la necesidad de combinar modelos automatizados con la validación experta. En conclusión, los GAT son herramientas eficaces para la selección de proyectos, pero no deben reemplazar la toma de decisiones humanas. Además, se evidencia que los modelos basados en financiación capturan estructuras financieras clave que influyen en la viabilidad de los proyectos, lo que aporta un valor añadido a la evaluación del riesgo de inversión.
Líneas de investigación futuras
- Ampliación de modelos basados en redes: Explorar redes adicionales que incluyan marcos regulatorios y estabilidad económica para optimizar la toma de decisiones.
- Integración de datos en tiempo real: Incorporar tendencias de mercado y datos económicos actualizados para mejorar la capacidad predictiva.
- Comparación con otros modelos de aprendizaje profundo: Evaluar el desempeño de los GATs frente a otras variantes de redes neuronales gráficas como Graph Convolutional Networks (GCNs).
- Aplicación en otros sectores de infraestructura: Extender la metodología a sectores como el transporte y la planificación urbana para evaluar su aplicabilidad.
- Desarrollo de sistemas híbridos de apoyo a la decisión: Combinar técnicas MCDM con predicciones en tiempo real para maximizar la usabilidad en la práctica.
Conclusión
El estudio demuestra que la integración de GAT con MCDM mejora la toma de decisiones en inversiones en ingeniería de la construcción. Al estructurar los datos en modelos basados en redes, se proporciona un marco más preciso y contextualizado para la selección de proyectos. Los resultados confirman la superioridad de los modelos basados en redes frente a los enfoques tradicionales, especialmente en lo que respecta a la gestión de dependencias complejas entre proyectos. No obstante, se destaca la importancia de la validación experta para mitigar errores de clasificación. Las futuras investigaciones deben centrarse en mejorar las capacidades del modelo, integrar datos dinámicos y perfeccionar las herramientas de apoyo a la toma de decisiones para optimizar la selección de inversiones en ingeniería de la construcción.
Referencia:
MOSTOFI, F.; BAHADIR, U.; TOKDEMIR, O.B.; TOGAN, V.; YEPES, V. (2025). Enhancing Strategic Investment in Construction Engineering Projects: A Novel Graph Attention Network Decision-Support Model. Computers & Industrial Engineering, 203:111033. DOI:10.1016/j.cie.2025.111033
El artículo se puede descargar gratuitamente hasta el 5 de mayo de 2025 en el siguiente enlace: https://authors.elsevier.com/c/1kmrt1I2r-Q9z0