El Canal de Suez

Grabado realizado en 1881 del canal de Suez. Wikipedia

El canal de Suez es una vía artificial de navegación situada en Egipto que une el mar Mediterráneo con el mar Rojo. Su longitud es de 163 km entre Puerto Saíd (en la ribera mediterránea) y Suez (en la costa del mar Rojo). Esto hizo posible permitir un tránsito marítimo directo entre Europa y Asia, eliminando la necesidad de rodear toda África como venía siendo habitual hasta entonces, lo que impulsó un gran crecimiento en el comercio entre los dos continentes.

Las obras de excavación del canal se iniciaron oficialmente el 10 de abril de 1859 promovidas por el francés Ferdinand de Lesseps, autorizado por las autoridades egipcias de la época. Fue inaugurado en 1869. En el momento fue realizada una de las más grandes obras de la ingeniería del mundo por decenas de miles de nativos (fellahs) llevados por la fuerza desde todas las regiones de Egipto. Al principio no se disponía de maquinaria y todo tenía que hacerse a mano. Mueren miles de personas por fatiga, ritmo de trabajo, clima tórrido, cólera, zona sin agua, etc. El trabajo se aceleró después de la introducción de las dragas de cangilones. Al final de 1865 se contabilizan, entre Puerto Saíd y Suez 50 dragas, 20 grúas de vapor, 129 barcazas, 30 aparatos elevadores y 20 locomotoras. El 17 de febrero de 1867 un primer barco atravesó el canal, aunque la inauguración oficial se realizó el 17 de noviembre de 1869 con la presencia de la emperatriz Eugenia de Montijo.

La construcción del canal de Suez marcó un hito en la historia de la tecnología ya que, por primera vez, se emplearon máquinas de excavación especialmente diseñadas para estas obras, con rendimientos desconocidos hasta esa época. En algo más de dos años se excavaron más de 50 millones de metros cúbicos, de los 75 millones del total de la obra.

Vista del Canal de Suez. http://olinalzin18.wordpress.com/

La ingeniería española también estuvo implicada en la construcción del canal con Cipriano Segundo Montesino, Eduardo Saavedra y Nemesio Artola. En este enlace podéis leer un poco más al respecto. Para conocer más detalles sobre el Canal de Suez, puedes visitar la web oficial de Suez Canal Authority (en inglés, pero altamente recomendable).

Algunos datos desde su inauguración:

  • 1869, inauguración
  • 1875, gobierno británico compra las acciones egipcias
  • 1888, por convenio internacional canal abierto a todas las naciones
  • 1936, Británicos reciben los derechos de mantener fuerzas militares en el canal
  • 1948, egipcios regulan uso de canal por barcos que sirven a puertos israelitas
  • 1954, acuerdo para retirada británica a los 7 años
  • 1956, junio, retirada británica
  • 1956, 26 de julio, Egipto nacionaliza el canal
  • 1956, 31 de octubre, ataques de Francia y Gran Bretaña para abrir el canal a todos los barcos. Egipto amenaza con hundir 40 barcos que había en el canal
  • 1957, marzo, reapertura del canal, O.N.U. interviene
  • 1967, junio, guerra de los seis días, cierre del canal
  • 1975, 5 de junio, reapertura del canal
  • 1979, uso sin restricciones para Israel tras acuerdo de paz

Pero lo mejor será ver el vídeo que nos presenta la serie Megaestructuras, del Canal Historia. Espero que os guste.

También os dejo un “timelapse” sobre el recorrido del canal.

 

Los procesos constructivos y Eduardo Torroja

Eduardo Torroja Miret (1899-1961)

Hablar de Eduardo Torroja es referirse a uno de los referentes de la ingeniería civil del siglo XX. Además de ingeniero, destacó como proyectista, científico, investigador, gestor y docente. Protagonizó en gran medida la revolución científica y técnica que  abrió paso al trepidante desarrollo del hormigón armado y pretensado en la primera mitad del siglo XX, contribuyendo a la evolución de la industria de la construcción.

Especial mención requiere su famoso libro Razón y Ser de los Tipos Estructurales (1957), en el que comenta el comportamiento físico de las diferentes estructuras, sin recurrir para nada al cálculo, según los materiales utilizados, su proceso constructivo, etc., dedicando un capítulo a exponer sus conceptos sobre la estética estructural.

Para entender la obra de Torroja, considerado en su época como un creador e innovador dentro del campo de las estructuras, es necesario releer el prólogo de su libro el que el propio autor nos dice:

Cada material tiene una personalidad
específica distinta, y cada forma impone un diferente fenómeno tensional.
la solución natural de un problema -arte sin artificio-,
óptima frente al conjunto
de impuestos previos que le originaron, impresiona con su mensaje,
satisfaciendo, al mismo tiempo, las exigencias del técnico y del artista.

El nacimiento de un conjunto estructural,
resultado de un proceso creador, fusión de técnica con arte,
de ingenio con estudio,
de imaginación con sensibilidad, escapa del puro dominio de la lógica para entrar en las secretas fronteras de la inspiración.

Antes y por encima de todo cálculo
está la idea, moldeadora del material en forma resistente, para
cumplir su misión.

A esa idea va dedicado este libro.

” Razón y Ser de los Tipos Estructurales”.
Última Edición: Ed. CSIC, 1991)

Pero lo mejor será que veamos un vídeo de su hijo José Antonio hablando de su padre empleando el proceso constructivo como hilo conductor. Espero que os guste.

Construcción de la torre Agbar (Barcelona)

Torre Agbar. Wikipedia

La Torre Agbar, diseñada por el arquitecto Jean Nouvel en colaboración con la firma b720 Fermín Vázquez Arquitectos , es un rascacielos de Barcelona  situado en la confluencia de la avenida Diagonal y la calle Badajoz junto a la plaza de las Glorias . Tiene 34 plantas sobre la superficie además de cuatro plantas subterráneas para un total de 145 metros de altura, convirtiéndose, en el momento de su apertura (junio de 2005) en el tercer edificio más alto de BarcelonaEl edificio, que tuvo un coste de 130 millones de euros, posee en total 50.693 metros cuadrados de superficie, de los que 30.000 son de oficinas, 3.210 de instalaciones técnicas, 8.132 de servicios, incluyendo un auditorio, y 9.132 de aparcamiento. El rascacielos fue adquirido por la cadena hotelera estadounidense Hyatt en 2013 por 150 millones de euros y pasará a convertirse en un hotel de lujo.

Los materiales principales empleados en la construcción del edificio fueron, por un lado el hormigón con el que se realizó la estructura de la torre, y por otro el aluminio y el vidrio en forma de chapa lacada de distintos colores. La estructura se conforma de dos cilindros ovales no concéntricos de hormigón de forma que uno está cubierto totalmente por el otro. El cilindro exterior está finalizado por una cúpula de cristal y acero lo que como resultado confieren a la torre su característica forma de bala. En este cilindro exterior, con un grosor de 45 cm. en la base y de 25 en su cima se sitúan las aberturas (4359 en total) y las ventanas (4500), mientras que en interior, de 50 cm. en la base y 30 es su parte más alta, es donde están los ascensores, las escaleras y las instalaciones

El proceso de construcción de la torre, llevado a cabo por la empresa fue Dragados, se alargó durante cerca de 6 años desde que a mediados de 1999 se iniciaron las actividades para el acondicionamiento del solar que habría de acoger el edificio hasta principios de 2005 en que se dio por finalizada la obra. Os dejo aquí unos vídeos sobre la construcción de esta torre, que espero os gusten.

 

Efectos estructurales del megaterremoto de Chile

Terremoto de Chile de 2012. Wikipedia

Acabamos de conocer la noticia de un nuevo terremoto en el norte Chile a las 20.46 hora local del martes 1 de abril de 2014, de magnitud 8,2 en la escala de Richter y de larga duración. Esta noticia sirve de nexo para analizar el megaterremoto que tuvo lugar en el 2010. En efecto, el Terremoto de Chile de 2010 fue un sismo ocurrido a las 03:34:08 hora local (UTC-3), del sábado 27 de febrero , que alcanzó una magnitud de 8,8 MW. El epicentro se ubicó en el Mar chileno, frente a las localidades de Curanipey Cobquecura, cerca de 150 kilómetros al noroeste de Concepción y a 63 kilómetros al suroeste de Cauquenes, y a 30,1 kilómetros de profundidad bajo la corteza terrestre. El sismo tuvo una duración de 3 minutos 25 segundos, al menos en Santiago y en algunas zonas llegando a los 6 minutos. Fue percibido en gran parte del Cono Sur con diversas intensidades, en lugares como Buenos Aires y São Paulo por el oriente.  Las víctimas llegaron a un total de 525 fallecidos. Cerca de 500 mil viviendas están con daño severo y se estiman un total de 2 millones de damnificados, en la peor tragedia natural vivida en Chile desde 1960. El sismo es considerado como el segundo más fuerte en la historia del país y el sexto más fuerte registrado por la humanidad. Sólo es superado a nivel nacional por el cataclismo del terremoto de Valdivia de 1960, el de mayor intensidad registrado por el ser humano mediante sismómetros. El sismo chileno fue 31 veces más fuerte y liberó cerca de 178 veces más energía que el devastador terremoto de Haití ocurrido el mes anterior, y la energía liberada es cercana a 100.000 bombas atómicas como la liberada en Hiroshima en 1945.

Este terremoto causó graves daños en las edificaciones del centro del país.  Se ha visto en la práctica el funcionamiento sísmico del universo de edificaciones existentes en la zona, en todos sus sistemas de estructuración, materiales y usos. En lo que compete a la Ingeniería Estructural ha sido un tiempo de aprendizaje, de observación de los distintos tipos de fallas, del comportamiento variado de los materiales y también de los defectos constructivos. Ha generado la necesidad de confeccionar un catastro de las edificaciones, basándose en su daño estructural, estudiar edificios completamente colapsados, otros que han quedado con serios problemas estructurales y aquéllos que mediante reparaciones menores, podrán seguir siendo habitados. Las edificaciones que requieran ser demolidas, precisan la realización de proyectos de ingeniería, la disposición de importantes recursos económicos y técnicos, y medidas de seguridad extremas para salvaguardar a la población. Este escenario obliga a poner en ejercicio las diferentes técnicas de reparación, de acuerdo a los distintos materiales de construcción y sobre la base de las tecnologías existentes. El objetivo planteado ha sido darles nuevamente las características de resistencia que eviten su colapso ante nuevas solicitaciones sísmicas.

A continuación os paso un vídeo realizado por la Universidad Politécnica de Madrid donde Richard Leonardo Zapata Garrido explica este terremoto y sus consecuencias desde el punto de vista ingenieril. Espero que os guste y os sea útil.