Construcción de túneles mediante perforación y voladura

Figura 1. Operaciones básicas integrantes del ciclo de excavación de túneles con explosivos

A pesar del avance tecnológico, la técnica de perforación y voladura sigue siendo popular en la excavación de túneles debido a sus ventajas. A diferencia de la excavación mecánica, la técnica de explosivos es versátil, trabajando con varios tipos de roca y secciones de obra. Además, se adapta a otros trabajos, es fácilmente transportable y la inversión inicial es reducida. Se trata de un método de frente abierto, que consiste básicamente en la realización de unos taladros que posteriormente se cargan con explosivos y se detonan. Los gases de la explosión penetran en las fracturas y desmenuzan la roca.

La técnica de arranque con explosivos se utiliza en rocas de alta resistencia con una velocidad sísmica del orden de 2000 a 2500 m/s, dependiendo de las condiciones del terreno o de la abrasividad de las rocas. Es aplicable a rocas con una resistencia a la compresión de 80 MPa o superior, incluso las más duras, lo que la hace más eficiente que la excavación mecánica. En estos casos, la excavación mecánica puede resultar antieconómica debido a la pérdida de rendimiento y el consumo de elementos de desgaste. Además, la técnica de perforación y voladura es más flexible y puede adaptarse a cambios litológicos o trastornos tectónicos en el terreno.

La técnica de excavación con explosivos consiste en realizar taladros en el frente de excavación, cargarlos con explosivos y detonarlos. Para perforar se emplean equipos como “jumbos” o carros perforadores. Uno de los principales objetivos de una buena voladura es evitar el deterioro excesivo de la roca circundante a la excavación, ya que una voladura inadecuada puede provocar sobreexcavaciones y caídas de bloques que generan problemas de estabilidad adicionales. Por lo tanto, es necesario efectuar voladuras controladas y técnicas como el precorte o las voladuras suaves para minimizar el daño estructural al terreno. En la Figura 1 se muestran las operaciones básicas que componen el ciclo de excavación de túneles con explosivos.

Los taladros se ajustan a una longitud de avance de entre 1 y 4 metros, según la resistencia de la roca. Aunque hay diferentes disposiciones de taladros, todas ellas deben atenuar el confinamiento generado por la onda expansiva, ya que solo hay una cara de salida disponible.

Figura 2. Zonas de una voladura en un túnel

La técnica de voladura en el frente de ataque consiste en una explosión controlada que se lleva a cabo mediante una secuencia. Se utilizan detonadores de retardo de milisegundos para activar las diferentes áreas de la carga en momentos distintos. Es necesario que en un principio se cree un hueco libre con los barrenos de cuele y contra-cuele, hacia el cual romperán las cargas restantes de la sección. Luego, se vuela la destroza y se da forma a la sección del túnel con los barrenos del piso (zapateras) y los barrenos de recorte o contorno.

La excavación de túneles puede llevarse a cabo en secciones completas o, si son demasiado grandes, por fases, empleando galerías de avance, destrozas laterales y/o banqueo del suelo. Los jumbos modernos presentan una ventaja significativa en comparación con los topos y minadores. A diferencia de los topos que solo pueden excavar secciones circulares y de los minadores que tienen una capacidad de cobertura limitada, los jumbos actuales pueden utilizarse para trabajos de perforación para el sostenimiento y tienen una gran movilidad que les permite desplazarse fácilmente de un frente a otro.

En términos de inversión, los equipos de perforación tienen un costo inferior en comparación con los minadores o topos para una misma sección de excavación. Por lo tanto, en obras lineales de reducida longitud, es el sistema más recomendable para su amortización e incluso se puede destinar a la ejecución de otras obras distintas.

Sin embargo, el arranque con explosivos presenta algunos inconvenientes en comparación con la excavación mecánica. Por ejemplo, los perfiles de excavación pueden ser más irregulares y la alteración del macizo rocoso remanente puede ser intensa si las voladuras no se disparan empleando técnicas de contorno en el perímetro. Ambos aspectos pueden aumentar los costos del sostenimiento y, sobre todo, del revestimiento mediante hormigonado.

Además, si se realizan perforaciones con explosivos en zonas urbanas, las vibraciones generadas por las voladuras pueden ser un factor limitante. Es necesario proteger la integridad de las edificaciones y otras estructuras subterráneas y evitar las molestias a las personas.

Ciclo básico de perforación y voladura

En primer lugar, es importante tener en cuenta que la excavación de túneles en roca usando la perforación y los explosivos es una operación cíclica y no continua.

El ciclo básico de excavación mediante perforación y voladura consta de las siguientes operaciones. Si solo se excava la parte superior y un banco en lugar de todo el frente, se tendrá un ciclo doble más complejo:

  • Perforación de barrenos en el frente a un patrón y profundidad adecuados.
  • Retirar el equipo perforador.
  • Carga del explosivo y retirada del personal.
  • Detonado de las cargas.
  • Evacuación de humos y ventilación.
  • Saneo de los hastiales y bóveda y bulonado.
  • Carga y transporte del escombro.
  • Labores de sostenimiento y gunitado.
  • Replanteo de la nueva voladura.

El tiempo que se tarda en completar un ciclo de excavación para un túnel con sección completa o de calota, en caso de que el avance se realice en varias fases, suele ser de uno a dos turnos, según la sección y el tipo de sostenimiento requerido. La distribución de tiempos suele seguir la tabla que se presenta a continuación:

Perforación de barrenos 10 – 30%
Carga del explosivo 5 – 15%
Voladura y ventilación 5 – 10%
Saneo y desescombro 15 – 35%
Sostenimiento 65 – 10%

En la tabla se puede observar que el tiempo destinado al sostenimiento en la sección de avance puede llegar a superar el 50% de la duración total del ciclo en los casos más desfavorables. Por otro lado, en la sección de destroza, estos tiempos suelen ser generalmente del orden de la mitad e incluso inferiores.

En general, se recomienda utilizar una tuneladora (TBM) para excavar túneles de más de 4,5 km de longitud y la técnica de perforación y voladura para túneles de menos de 1,5 km (ver Figura 3). Sin embargo, es importante tener en cuenta que esta es una guía general y que cada proyecto debe ser evaluado en función de factores específicos que puedan influir en la elección del método de excavación. Por ejemplo, puede haber casos en los que un túnel de 5 km se excave mediante la técnica de perforación y voladura en lugar de un TBM, o viceversa, en función de factores como la geología, la geometría, el impacto ambiental y los plazos de ejecución. Para los túneles cuya longitud está comprendida entre los 1,5 km y los 4,5 km, los costos de ejecución pueden ser similares, pero se deben tener en cuenta otros factores para tomar una decisión informada sobre el método de excavación más adecuado.

Figura 3. Coste según longitud del túnel excavado para los métodos con TBM y perforación y voladura. https://bestsupportunderground.com/tbm-perforacion-voladura/

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación por hidrovoladura

La compactación por hidrovoladura (“hydroblasting“) es una técnica de mejora que es diferente de la compactación clásica por explosivos, aunque de diseño similar. En primer lugar, el agua se introduce en el terreno y luego se detonan explosivos en profundidad. Es una técnica que se ha demostrado eficaz en el tratamiento de suelos colapsables tipo loess en Bulgaria.

El procedimiento constructivo se desarrolla en tres fases (Bielza, 1999):

  • En primer lugar, se inunda el suelo hasta que sobrepasa su Límite Líquido. Para ello se excavan zanjas de 20 a 40 cm de anchura y 4 a 5 m de profundidad alrededor del área a tratar (Figura 1). Con este drenaje se evita inundar las capas superiores del terreno adyacente. Esta inundación se realiza en varios días y se ayuda por drenes separados unos metros de las barrenas de los explosivos. Los cartuchos superiores quedan a solo 500-700 mm por debajo de la parte superior de cada perforación.
  • A continuación se colocan las cargas en barrenos separados entre 3 y 6 m, procediéndose a continuación a la voladura. Las cargas se detonan por separado en cada barreno, con intervalos entre las explosiones de al menos un minuto.
  • Por último, se consolida el suelo tras la salida inmediata y drenaje posterior del agua intersticial.
Figura 1. Compactación de suelos colapsables no saturados por hidrovoladura (Bell, 1993)

Inmediatamente después de la voladura, la superficie del suelo se levanta y se fractura. El aire y el agua escapan por las aberturas que aparecen en la superficie. Este efecto puede durar desde minutos a horas. Ocurre primero un asentamiento inicial y luego otro continuo durante algún tiempo. Como la compactación del metro superior es escasa, hay que compactarla con un compactador vibratorio pesado.

La diferencia fundamental entre la compactación por explosivos y la hidrovoladura se encuentra en el momento en que tiene lugar el asiento. Con los explosivos, la totalidad de la compactación ocurre durante la explosión. Sin embargo, en la hidrovoladura, los asientos ocurren durante todo el proceso: tanto en la inundación como en la explosión y posteriormente durante la consolidación.

Bell (1993) informa que la velocidad de compactación conseguida mediante hidrovoladura es unas 12 veces más rápida que una simple inundación de un loess, siendo su grado de compactación 3 o 4 veces superior. Asimismo, el suelo consigue una compactación uniforme, con una disminución de la porosidad entre un 33% y un 50%.

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • BELL, F.G. (1993). Engineering Treatment of Soils. Ed. E & FN Spon, Londres.
  • LÓPEZ JIMENO, C. et al. (1995). Manual de perforación y voladuras de rocas. Instituto Tecnológico Geominero de España.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Requerimientos en la ejecución de los barrenos

Perforacion barrenosLa perforación realizada en una voladura, consiste en la operación de llevar a cabo varias penetraciones cilíndricas en la superficie del macizo a volar, llamadas barrenos que tendrán una distribución y un ángulo de inclinación diseñados con el fin de producir el arranque, fragmentación y desplazamiento de parte del macizo rocoso. Estos barrenos alojarán las cargas explosivas que se detonarán con una secuencia de disparo diseñada para obtener un tamaño de piedra medio o fragmentación óptimos con mínimas proyecciones y vibraciones.

La correcta ejecución de los barrenos, sea cual sea el sistema de perforación empleado, se caracteriza fundamentalmente por los siguientes factores:

  • El diámetro del barreno
  • La longitud o profundidad del barreno
  • La desviación de la perforación
  • La estabilidad del barreno

El diámetro del barreno

barrenoEl diámetro del taladro necesario en una voladura constituye un factor clave a la hora de obtener el coste económico más favorable en el conjunto de operaciones de arranque de la roca. Se determina este valor en función de los equipos de perforación disponibles y de los explosivos a utilizar. Este parámetro se debe combinar con un esquema geométrico de los barrenos que permita una fragmentación adecuada del material para su carga, transporte y posible trituración.

Por tanto el diámetro de perforación idóneo depende de los siguientes factores:

  • Características del macizo rocoso
  • Grado de fragmentación requerido
  • Altura de banco y configuración de las cargas
  • Economía del proceso de perforación y voladura
  • Dimensiones del equipo de carga y transporte

Profundidad del barreno

La longitud del barreno se encuentra directamente relacionada con el diseño previsto para la excavación, ya sea a cielo abierto o subterránea. A mayor profundidad de barreno, mayor tamaño del equipo de perforación (perforadora, carro, compresor y barras). Además, hay que tener en cuenta que cuando las longitudes del barreno son muy grandes, pueden presentarse problemas de desviación de los barrenos que afectarán a la fragmentación de la roca y que aumentarán el riesgo de generar fuertes vibraciones, proyecciones y sobreexcavaciones.

Desviación de la perforación

Que los barrenos se encuentren correctamente alineados y rectos es una condición necesaria para que la voladura se desarrolle según lo previsto. Para ello se debe minimizar la desviación de los taladros utilizando barras de perforación rígidas. Además, son necesarios otros factores básicos: la precisión del emboquillado, la fuerza de avance, la compatibilidad entre la barra y la boca y los diversos dispositivos de guía. Como se ha visto en el punto anterior, la desviación aumenta con la longitud de la perforación.

Los factores que causan las desviaciones de los barrenos se pueden clasificar en los siguientes:

  • Propiedades estructurales de la roca: planos de esquistosidad, diaclasas, cambios de litología, etc.
  • Diámetro de perforación: si es demasiado grande en relación con el varillaje, se producirán desviaciones por la falta de resistencia de la sarta al pandeo y se desgastará antes.
  • Errores de alineación y emboquille: es frecuente valores de más de 10 cm o de una distancia igual a la magnitud del diámetro de perforación.

 

Estabilidad del barreno

Las paredes de la perforación deben permanecer sin derrumbes ni desprendimientos locales hasta que se produzca la operación de carga del explosivo. La estabilidad dependerá de la geología de la roca y de la existencia de agua en el macizo. Si se seleccionan correctamente los útiles de perforación, se podrá garantizar una mejora de la estabilización de los barrenos.

A continuación os paso un Polimedia donde se explican estos conceptos.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.

 

La perforación a rotopercusión

Marini Castoro Neumático

La perforación a rotopercusión es el sistema clásico de perforación de barrenos que aparece con el desarrollo industrial del siglo XIX. Este sistema, junto con la invención de la dinamita, constituyen dos hitos en el desarrollo del arranque de rocas en minería y obras civiles. Este tipo de perforadoras se usan tanto en obras públicas subterráneas como en minas o explotaciones a cielo abierto: túneles, carreteras, cavernas de centrales hidráulicas, etc.

El principio de perforación de estos equipos se basa en el impacto de una pieza de acero llamada pistón, sobre un útil, que a su vez transmite la energía al fondo del barreno, por medio de un elemento final denominado boca o bit. Este sistema de perforación suele usarse en terrenos muy duros y semiduros.

Las acciones básicas que tienen lugar sobre el sistema de transmisión de energía hasta la boca de perforación son las siguientes:

  1. La percusión: los impactos producidos por el golpe del pistón originan unas ondas de choque se que transmiten a la boca a través del varillaje
  2. La rotación: se hace girar la boca para cambiar la zona de impacto
  3. El empuje: para mantener en contacto la roca con la boca
  4. El barrido: donde el fluido permite extraer el detritus del fondo del barreno

Rotopercusión

Dependiendo del lugar donde esté instalado el martillo, las perforadoras a rotopercusión se clasifican en:

  • Perforadoras con martillo en cabeza, que a su vez pueden ser de accionamiento neumático o hidráulico. Aquí la rotación y la percusión se producen fuera del barreno, transmitiéndose a través de una espiga y del varillaje hasta la boca de perforación.
  • Perforadoras con martillo en fondo, en inglés Down the Hole (D.T.H.), donde la acción del pistón se lleva a cabo de una forma neumática y la acción de rotación puede ser tanto de tipo hidráulico como neumático. En ese caso la percusión se realiza directamente sobre la boca de perforación, mientras que la rotación se efectúa en el exterior del barreno.

Perforación a rotopercusión

Las gamas más habituales de diámetros utilizados con estas perforadoras dependen del campo de aplicación, según se puede ver en la tabla siguiente:

Tipo de perforadora

Diámetro de perforación (mm)

Cielo abierto

Subterráneo

Martillo en cabeza

50 – 127

38 – 65

Martillo en fondo

75 – 200

100 – 165

En los martillos manuales, la rotación se transmite a través del buje de rotación del martillo y se acciona por el propio mecanismo del pistón, en función de los impactos: a menor número de impactos, debe corresponder un menor par de rotación.

En los equipos de perforación pesados, la rotación se acciona a través de un motor independiente, lo que permite actuar bien sobre la rotación, bien sobre la percusión, según los condicionantes del terreno.

Como ventajas de la perforación rotopercutiva se pueden señalar las siguientes:

  • Su aplicación a todo tipo de rocas, blandas o duras
  • Amplia disponibilidad de diámetros
  • Versatilidad en los equipos y gran movilidad
  • Se maneja con un solo operario
  • Rapidez y accesibilidad en el mantenimiento de los equipos
  • Precio de adquisición no muy elevado

En el siguiente Polimedia podéis ver una explicación sobre este sistema.

En el vídeo que os muestro a continuación, podéis ver cómo golpea una perforadora con martillo de fondo. Espero que os guste.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.