Torre de Smeaton. Devon, Inglaterra (1759).

La Torre Smeaton es un faro y monumento al ingeniero civil John Smeaton. Su estructura, un avance en el diseño de faros, estuvo en uso desde 1759 hasta 1877, cuando la erosión de la cornisa obligó a reemplazarla. La torre fue desmantelada y reconstruida en Plymouth Hoe (Devon), donde se encuentra actualmente.
Las rocas Eddystone forman parte de un arrecife de granito rojo que queda sumergido durante la marea alta, lo que supone un peligro para la navegación. Por esta razón, se construyó un faro a 14 km al sur de Plymouth Sound (Inglaterra).
Antes de esta torre, Smeaton había construido dos faros de madera que no resistieron el paso del tiempo. Tras analizar lo que falló en los anteriores, optó por la piedra, ya que es muy resistente frente al viento, el agua y el fuego. Para fijar la estructura a la base rocosa, talló seis plataformas en la roca y las rellenó con sillares de granito con forma de cola de milano, lo que aseguró su estabilidad.
Utilizó un mortero a base de cal calcinada para lograr una construcción monolítica, reforzada con pernos de roble y tacos de mármol. La torre está compuesta por 1493 bloques de piedra, mientras que su interior está construido con piedra caliza extraída de la isla de Portland. Redescubrió el uso de la cal hidráulica, un tipo de hormigón utilizado en la época romana que permitía fraguar el material bajo el agua.
En 1877 se comprobó que las rocas sobre las que se erguía se estaban erosionando. Cada vez que una gran ola lo golpeaba, el faro temblaba de lado a lado. La Torre de Smeaton dejó de funcionar en febrero de 1882, cuando se instaló una luz temporal en su sucesora, la Torre de Douglass, que se estaba construyendo en una roca cercana. Ese mismo año, la parte superior de la torre fue desmantelada y reconstruida como monumento en Plymouth Hoe, donde reemplazó a un obelisco triangular construido por Trinity House a principios del siglo XIX. El monumento fue inaugurado al público el 24 de septiembre de 1884 por el alcalde de Plymouth. Los cimientos y una sección de la antigua torre permanecen en las rocas de Eddystone, cerca del faro actual. Como los cimientos eran demasiado fuertes para desmantelar, se dejaron en su lugar.
Turning Torso. Malmö, Suecia (2005).

Turning Torso es un rascacielos residencial neofuturista en Malmö, Suecia, y el segundo más alto del país, superado en 2022 por la Karlatornet. Fue construido por HSB Suecia y es considerado el primer rascacielos retorcido del mundo.
Diseñado por Santiago Calatrava, se inauguró el 27 de agosto de 2005. Con 190 metros de altura y 54 plantas, alberga 147 apartamentos residenciales. Este edificio, inspirado en el torso humano, tiene 190 m de altura y cuenta con 54 plantas destinadas a uso mixto, incluyendo residencias y oficinas. La cimentación se realizó directamente sobre un estrato de roca caliza.
La excavación de la cimentación principal de la torre se realizó con tablestacas metálicas que marcaban el perímetro, introducidas 15 m en el terreno y 3 m en el lecho rocoso mediante vibradores. Se inyectó hormigón fuera de las tablestacas para reforzar la estructura y evitar filtraciones de agua. Tras la excavación, se hormigonó una losa de cimentación de 30 m de diámetro y 7 m de espesor, y se construyeron dos plantas de sótano con salas técnicas y acceso al aparcamiento. Se utilizaron 5100 m³ de hormigón, que se vertieron en 3 días y noches. La cimentación se completó en junio de 2002.
La cimentación del cordón principal de la celosía exterior soporta cargas de compresión y tracción en función del viento. Para garantizar su durabilidad, se minimizan los efectos de las cargas alternantes mediante pilotes cuadrados prefabricados que llegan al estrato rocoso y anclajes postesados que también lo alcanzan, garantizando que su longitud de anclaje sea inferior a la de los pilotes. La fuerza de pretensado de los anclajes supera la tracción máxima, por lo que los pilotes se mantienen en compresión. Las cargas alternantes solo modifican la compresión de los pilotes y la tracción de los anclajes sin invertir las fuerzas, con una variación de tracción en los anclajes del 2-3 %, lo que elimina el riesgo de fatiga. En resumen, la cimentación actúa como un conjunto postesado de hormigón, con alta rigidez, resistencia y durabilidad.
Torre Agbar. Barcelona, España (2005).

La Torre Glòries, antes Torre Agbar, es un rascacielos de Barcelona situado en la avenida Diagonal, junto a la plaza de las Glorias. Con 34 plantas y 144 metros de altura, fue el tercer edificio más alto de la ciudad en su apertura en 2005. El edificio tiene 50.693 m², de los cuales 30.000 m² son oficinas. Inaugurado oficialmente el 16 de septiembre de 2005, costó 130 millones de euros.
La torre fue diseñada por Jean Nouvel en colaboración con b720 Fermín Vázquez Arquitectos. Su diseño se inspiró en símbolos de la cultura catalana, como los campanarios de la Sagrada Familia de Gaudí y el hotel Attraction, proyecto de Gaudí rediseñado en 1956 por Joan Matamala. Además, la parte norte de la torre se orientó para ofrecer la mejor vista posible de la Sagrada Familia. También se inspiró en los pináculos de la montaña de Montserrat, símbolo de Cataluña.
El peso de esta estructura, que mide 145 m de altura, tiene 34 pisos y 4 sótanos, es considerablemente menor que la presión ascendente que ejerce sobre ella. Por este motivo, se diseñó una losa de subpresión anclada al terreno mediante módulos de pantallas que funcionan por fricción negativa para equilibrar dicha subpresión. La losa tiene un espesor de 80 cm.
Esta losa descansa sobre un lecho de grava drenante de 40 cm de espesor que facilita el drenaje hacia cuatro pozos. Estos pozos están diseñados para evitar que, en caso de un aumento del nivel freático, la subpresión supere los límites admisibles para la cimentación. La losa está diseñada para soportar una presión ascendente de hasta 8 t/m².
Debido a que el peso muerto de la construcción es menor que la presión ascendente, se ha diseñado una losa de subpresión anclada al terreno con módulos de pantalla debajo de cada pilar, que equilibra la subpresión mediante fricción negativa. Esta solución permite una losa de 80 cm de espesor, lo que alivia el comportamiento de las estructuras de contención, ya que las pantallas son más cortas y alcanzan mayor estabilidad. La losa descansa sobre gravas drenantes de 40 cm de espesor que facilitan el drenaje del agua hacia cuatro pozos surgentes que evitan el aumento de la subpresión ante las subidas del nivel freático.
Cursos:
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.