
La inyección de alta presión, conocida como jet-grouting es un proceso que implica romper el suelo (o roca suelta), mezclarlo y reemplazarlo parcialmente con un agente cementante (generalmente, cemento). La desagregación se logra mediante un fluido con alta energía, que puede incluir el propio agente cementante (Figura 1).
Por tanto, el jet-grouting se considera una técnica de tratamiento del terreno que mejora sus propiedades resistentes y compresibles y reduce la permeabilidad.
La primera patente se aplicó en el Reino Unido en la década de los 50, aunque su desarrollo real se llevó a cabo en Japón a principios de los 70 y se introdujo en Europa a mediados de esa misma década. Hoy en día, la técnica se ha desarrollado extraordinariamente.
En general, se utiliza una mezcla de agua y cemento. También se pueden utilizar otros tipos de conglomerantes hidráulicos, como la bentonita, el filler y las cenizas volantes. Si se emplea bentonita en la mezcla, antes de agregar el cemento hay que preparar e hidratar la suspensión de agua y bentonita.
Esta técnica de alta presión consigue desagregar el suelo o la roca poco compacta, mezclándola y sustituyéndola por cemento, lo que permite rellenar huecos y discontinuidades. Básicamente, se expulsan chorros de lechada de cemento (grout) a través de unas toberas a velocidades muy altas, logrando así la rotura del terreno y su íntima mezcla con el mismo. La distancia que alcanza la erosión por chorro (energía de corte) varía en función del fluido empleado, del tipo de suelo, de la velocidad de ascenso, etc., y puede alcanzar hasta 5 m de diámetro. La técnica del jet-grouting tiene múltiples aplicaciones (mejora del terreno, impermeabilización, túneles, etc.), y el fluido de perforación también es variable (cemento, bentonita, mezclas químicas, etc.).
Las presiones de trabajo varían, llegando en algunos casos puntuales hasta los 90 MPa. Los sistemas de jet-grouting permiten inyectar lechadas de cemento en suelos de grano muy fino, en los que con otros sistemas solo se podrían inyectar productos químicos o ni siquiera estos. El jet-grouting puede aplicarse en arenas, limos e incluso suelos arcillosos de cierta consistencia.
La perforación del terreno antes de la inyección puede realizarse con cualquier equipo (a rotación o a rotopercusión, según las condiciones que requiera el terreno), con tal de que el varillaje se adapte a las altas presiones a las que se efectúa la inyección.
Casi todos los equipos de perforación empleados en la ejecución de anclajes son aptos. Si la perforación se realiza con jet en suelos blandos y se inyecta después de perforar, el cambio de salida del agua por el de la lechada en algunos equipos se puede realizar mediante una válvula situada en la boquilla de inyección.
En gravas, la inyección a alta presión introduce el mortero a través de los huecos, igual que con un equipo convencional, pero en este caso forma un bloque mucho más compacto, sin las dificultades que originan los rellenos de arcilla en el procedimiento tradicional.
Dependiendo del sistema de desplazamiento y fracturación del terreno y su mezcla con la lechada inyectada, la normativa europea (EN 12716) distingue los siguientes sistemas de jet-grouting (ver Figura 2):
- Sistema de fluido único: La disgregación y cementación del suelo se obtiene con un chorro único de un fluido a alta presión, que suele ser lechada de cemento.
- Sistema de doble fluido (aire): La presencia de aire desagrega y cementa el suelo, y también facilita la evacuación de los detritus generados. En comparación con un sistema de fluido único, produce un jet mayor y realiza una mayor sustitución del terreno.
- Sistema de doble fluido (agua): El suelo se rompe mediante un chorro de agua a alta presión que fluye a través de la boquilla superior, mientras que por la inferior se inyecta una lechada para cementar el suelo.
- Sistema de triple fluido: Mediante un chorro de agua a alta presión, un chorro de aire a presión y lechada de cemento se consigue romper el suelo. Es el más complejo de los sistemas, pero puede sustituir todo el suelo y producir una columna de mayor diámetro.

El sistema de fluido único es apropiado para arenas medias a densas y suelos cohesivos muy blandos. El doble fluido suele usarse en arenas medias a densas y suelos cohesivos de blandos a medios. En cambio, el triple fluido se puede utilizar prácticamente en cualquier suelo.
En la Tabla 1 se recogen los parámetros de trabajo más habituales para la maquinaria empleada en el jet-grouting.
Tabla 1. Parámetros de trabajo estándares para la maquinaria de jet-grouting
Parámetros de trabajo |
Fluido sencillo |
Doble fluido (aire) | Doble fluido (agua) |
Triple fluido |
Presión de la lechada (MPa) |
30 – 50 |
30 – 50 | > 2 |
> 2 |
Caudal de la lechada (l/min) |
50 – 450 |
50 – 450 | 50 – 200 |
50 – 200 |
Presión de agua (MPa) |
— |
— | 30 – 60 |
30 – 60 |
Caudal de agua (l/min) |
— |
— | 30 – 150 |
50 – 150 |
Presión de aire (MPa) |
— |
0,2 – 1,7 | — |
0,2 – 1,7 |
Caudal de aire (m3/min) |
— |
3 – 12 | — |
3 – 12 |
El rango de aplicación del jet-grouting está limitado principalmente por la resistencia del terreno que se va a erosionar. Esta es una de las principales diferencias con las inyecciones comunes, en las que lo importante es el tamaño de las fracturas y de los poros, que en el jet-grouting es irrelevante.
El jet-grouting puede emplearse en la mayoría de terrenos, desde rocas débiles hasta arcillas, puesto que solo requiere su fracturación, como ocurre con las inyecciones con fracturación. A diferencia de las inyecciones convencionales, el jet-grouting destaca por su aplicabilidad en suelos cohesivos. No obstante, cada tipo de sistema de jet-grouting tiene un campo de validez característico.
El límite superior de aplicabilidad del jet-grouting está en las gravas de 60 mm de diámetro. Obviamente, es imposible mover y cortar elementos gruesos en el entorno del jet, como bolos o bloques, ya que su energía no es suficiente.
La aplicación principal del jet-grouting son los suelos, pero también puede emplearse en el caso de emboquilles con roca alterada, rocas con cementación escasa, roca afectada por una excavación, etc. En roca sana, su resistencia a compresión se opone a la erosión provocada por los jets.
Las aplicaciones principales del jet-grouting son:
- Mejora del terreno
- Control de agua (permeabilidad)
- Recalces
- Túneles
La principal ventaja de este método es su versatilidad y flexibilidad. Como ya se ha indicado, se puede utilizar en todo tipo de terrenos y se puede realizar en espacios reducidos, alcanzando profundidades importantes sin tener que descubrir el terreno hasta la superficie.
En la Figura 3 se puede observar el aspecto de las columnas de refuerzo que se pueden conseguir con la inyección a elevada presión.

Sin embargo, una aplicación de interés es el uso del jet-grouting para ejecutar cortinas de impermeabilización. El caso más habitual es la construcción de columnas secantes, solapadas en una o varias filas (Figura 4).

Otro empleo muy común es la creación de pantallas de estanqueidad en el caso del fondo de un recinto apantallado sometido a subpresiones (Figura 5) o bien en barreras de impermeabilización en núcleos de presas (Figura 6).


También se puede utilizar el jet-grouting como elemento de impermeabilización en juntas de pantallas in situ o como elemento de cierre en pantallas de pilotes o micropilotes, cuando estos se construyen separados. En este caso, las columnas se realizan cada dos pilotes. Los pilotes serían el elemento estructuras y el jet-grouting garantizaría la impermeabilización.
Os dejo, por su interés, el artículo 677 del PG-3, donde se describen las características técnicas exigibles al jet-grouting.
Os paso varios vídeos al respecto, empezando por una animación sobre del Jet grouting de triple fluido:
Referencias:
ARMIJO, G.; HONTORIA, E. (2015). Diámetro de las columnas de jet grouting en función de las energías específicas de perforación e inyección. Ingeopres, 246:36-41.
YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.