Hormigones líquidos: innovación y aplicación estructural

El hormigón de consistencia líquida es una innovación que destaca por su elevada fluidez y su capacidad de moldeado en la construcción moderna. En otros artículos ya hemos hablado del hormigón autocompactante en relación con este tipo de hormigón. A diferencia del hormigón tradicional, este material requiere muy poco vibrado, lo que optimiza la mano de obra, reduce el ruido y previene afecciones físicas en los trabajadores.

La dosificación de este tipo de hormigón exige un alto contenido de finos, así como el uso de aditivos superfluidificantes y áridos de tamaño reducido para evitar la segregación. Gracias a su facilidad de bombeo, es ideal para estructuras con armaduras densas, revestimientos de túneles y proyectos arquitectónicos complejos. En definitiva, no solo mejora la productividad en la obra, sino que también garantiza una mayor durabilidad y calidad en los acabados finales.

 

Introducción: el hormigón que fluye como un líquido.

Cuando pensamos en hormigón, nos viene a la mente una masa densa, pesada y difícil de trabajar, que requiere un gran esfuerzo para compactarla. Sin embargo, la ingeniería de materiales ha desarrollado una innovación que desafía esta idea: el hormigón líquido. Este material avanzado fluye con facilidad y se adapta a cualquier molde sin esfuerzo. En realidad, se trata de toda una familia de hormigones de alta fluidez que van desde los fluidos hasta los autocompactantes, diseñados para cada necesidad específica. Entonces, ¿cómo es posible que un hormigón que se comporta como un líquido sea clave para construir estructuras más rápidas, seguras y duraderas? La respuesta radica en una serie de ventajas que trascienden su apariencia superficial.

Los puntos clave del hormigón líquido

A continuación, exploramos las cuatro ventajas fundamentales que explican por qué el hormigón líquido se está convirtiendo en el nuevo estándar del sector.

1. La paradoja del coste: es más caro, pero el proyecto total resulta más barato.

A primera vista, el hormigón líquido parece una opción más costosa. Su precio por metro cúbico es entre un 5 % y un 10 % superior al del hormigón convencional. Sin embargo, esta cifra no lo es todo. El verdadero ahorro se revela al analizar el coste global del proyecto.

La fluidez del material permite una puesta en obra mucho más rápida, lo que reduce el plazo de ejecución en aproximadamente un tercio. A esto hay que sumar que se necesita menos mano de obra para la compactación y que los costes de acabado son más bajos gracias a su superficie más homogénea, lo que compensa con creces el mayor precio del material. En grandes obras de ingeniería civil, como el Viaducto de Bergara de la Y Vasca, esta aceleración es fundamental y demuestra que el proyecto resulta más ventajoso en términos económicos.

2. Su mayor fortaleza no radica en el estado endurecido, sino en su puesta en obra.

Aunque sus propiedades finales son excelentes, las características más competitivas de este hormigón se manifiestan durante su colocación. El principal enemigo de la durabilidad del hormigón convencional son los errores humanos durante su colocación, como un vibrado deficiente o excesivo. De hecho, se ha comprobado que los defectos de compactación pueden aumentar la permeabilidad del hormigón tradicional hasta en diez veces, lo que debilita la estructura desde el primer día.

El hormigón líquido minimiza drásticamente estos errores. Su capacidad para rellenar los encofrados por su propio peso garantiza una compactación óptima con un esfuerzo mínimo, asegurando la calidad y la durabilidad de la estructura desde el principio.

«La necesidad de garantizar la calidad del hormigón y obtener estructuras duraderas es una de las causas fundamentales del desarrollo del hormigón con consistencia líquida».

3. Una revolución silenciosa para la salud y la seguridad laborales.

El proceso de vibrado del hormigón es esencial, pero también conlleva riesgos. Genera niveles de ruido muy elevados y somete a los trabajadores a vibraciones constantes que, a largo plazo, pueden causarles dolores, fatiga, rigidez articular e incluso una afección circulatoria conocida como «dedos blancos», que provoca la pérdida de sensibilidad.

Al reducir drásticamente la necesidad de vibración, el hormigón líquido transforma el entorno de trabajo. Las obras son más silenciosas y se minimizan los riesgos para la salud de los trabajadores. Esto resulta especialmente valioso en aplicaciones como el revestimiento de túneles, donde el ruido se amplifica en espacios confinados, lo que crea un entorno laboral más seguro y sostenible.

4. Mejor que el original: un producto final con propiedades superiores.

Aunque su principal ventaja es la facilidad de uso, el hormigón líquido endurecido también supera al convencional. El secreto radica en unos aditivos superfluidificantes de alta tecnología que permiten reducir el volumen de agua en la mezcla sin que esta pierda fluidez. Esta simple mejora provoca una serie de beneficios: al utilizar menos agua, el hormigón es más impermeable y, por tanto, más duradero.

Las conclusiones del proyecto de investigación europeo Brite/EURam son claras: para una misma relación agua/cemento, el hormigón líquido consigue:

  • Mayores resistencias mecánicas.
  • Una microestructura más densa y menos porosa.
  • Menor permeabilidad al agua y a otros agentes externos.
  • Una adherencia superior a las armaduras de acero.

Esta menor permeabilidad se traduce en una mayor durabilidad, ya que protege las armaduras de acero internas de la corrosión y alarga la vida útil de puentes, edificios y túneles. Además, esta calidad se manifiesta en acabados superficiales superiores, lo que permite crear hormigones arquitectónicos con formas esbeltas y elegantes, como las observadas en rascacielos emblemáticos, como la Torre Iberdrola.

Conclusión: el nuevo estándar de la construcción.

El hormigón líquido ha dejado de ser una tecnología experimental para convertirse en una realidad técnica que se extiende por todo el mundo en aplicaciones que van desde los cimientos más profundos y la prefabricación hasta los rascacielos más emblemáticos y las estaciones de tratamiento de aguas. Su capacidad para optimizar la productividad, garantizar una calidad superior y mejorar la seguridad en las obras lo posiciona no como una alternativa, sino como el futuro estándar de la construcción. Sus ventajas son tan contundentes que invitan a una reflexión final: ¿será este material el pilar sobre el que construiremos las ciudades más eficientes y sostenibles del mañana?

En esta conversación puedes escuchar aspectos interesantes sobre el tema tratado, que te serán de utilidad para comprenderlo mejor.

Este vídeo condensa de manera efectiva las ideas principales sobre los hormigones líquidos.

Os dejo un documento con algunas de las ideas más importantes.

Pincha aquí para descargar

Podéis acceder a la Guía Técnica de hormigones líquidos de IECA en este enlace: https://www.ieca.es/producto/hormigones-liquidos-pdf/

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Efectos del calor en el fraguado del hormigón fresco

Figura 1. Hormigonado en tiempo caluroso. https://hormigonaldia.ich.cl/recomendaciones-tecnicas/hormigonado-en-tiempo-caluroso/

Una temperatura elevada del hormigón fresco acelera la reacción química de fraguado y aumenta la velocidad de hidratación, lo que incrementa la demanda de agua para lograr una consistencia determinada. Aproximadamente, un aumento de 10 °C en la temperatura del hormigón requiere unos 7 litros de agua adicionales por metro cúbico para mantener la misma consistencia. Además, si se desea aumentar el asentamiento del cono de Abrams en 25 mm, se debería incrementar en un 2 % la cantidad de agua necesaria; sin embargo, a 40 °C, sería necesario un 3,5 % adicional de agua (ver Calavera et al., 2004). Esto reduce la fluidez del hormigón, que disminuye rápidamente con el tiempo, lo que dificulta las condiciones para su puesta en obra.

Otro efecto de las altas temperaturas es la rápida pérdida de consistencia del hormigón. A temperatura normal, el hormigón puede perder alrededor de 25 mm de asentamiento en media hora. Sin embargo, a temperaturas elevadas, esta pérdida aumenta significativamente debido a la evaporación y al mayor consumo de agua durante la rápida reacción química inicial del cemento.

Dado que no es posible aumentar la cantidad de agua en la mezcla sin comprometer la resistencia y durabilidad del hormigón, es necesario añadir plastificantes o cambiar a superfluidificantes para mantener las condiciones de trabajabilidad previstas, o reducir los tiempos de puesta en obra. En el caso del hormigón premezclado, puede ser necesario añadir estos aditivos en obra con un nuevo mezclado, una operación cuyo control es complejo. Por otro lado, la eficacia del superfluidificante disminuye rápidamente con el aumento de la temperatura, aunque los productos derivados de copolímeros vinílicos pueden mitigar este problema.

Los hormigones fabricados, colocados y curados a temperaturas más altas desarrollan su resistencia más rápidamente. Se ha observado que el hormigón se endurece el doble de rápido a 35 °C que a 20 °C. Sin embargo, debido a un curado deficiente, estos hormigones suelen presentar menores resistencias a los 7 y 28 días. De hecho, tras 28 días, su resistencia puede reducirse entre un 15 % y un 20 % (ver Calavera et al., 2004). Esta pérdida de resistencia se explica por la formación de productos de hidratación más porosos, resultado de un proceso de hidratación acelerado e imperfecto.

Las altas temperaturas ambientales suelen ir acompañadas de bajas humedades relativas, lo que aumenta la evaporación del agua del hormigón fresco y reduce la cantidad disponible para la correcta hidratación del cemento. Asimismo, la rápida pérdida de agua del hormigón en la superficie, superior al aporte por difusión desde el resto del hormigón, provoca la formación de fisuras superficiales por retracción plástica. Estos efectos se agravan con la presencia de viento y la exposición al sol (ver nomograma de Menzel). El secado superficial comienza cuando la velocidad de evaporación supera la velocidad a la que el agua asciende a la superficie recién colocada por exudación. Además, si las condiciones de sequedad son suficientes, puede formarse una costra superficial seca que bloquea el agua de exudación, impidiendo que llegue a la superficie. Esta agua queda almacenada debajo de la capa seca, lo que puede ocasionar una descamación posterior.

El rápido endurecimiento del hormigón incrementa la velocidad de generación de calor durante la hidratación del cemento, lo que provoca altas temperaturas y mayores diferencias térmicas debido a la lenta disipación del calor. Las altas temperaturas alteran el proceso de hidratación y generan compuestos como la etringita, que perjudican la durabilidad del hormigón.

Las diferencias térmicas entre el núcleo y la periferia de las piezas generan tensiones de tracción que el hormigón en proceso de endurecimiento no puede soportar, provocando fisuras que reducen su durabilidad. En secciones delgadas, de menos de 150 mm, es crucial evitar la formación de fisuras de retracción plástica, ya que pueden afectar a una parte significativa de la sección. En elementos masivos, el problema radica en el riesgo de fisuración térmica debido a las altas temperaturas que el hormigón puede alcanzar. Las fisuras pueden aparecer tanto durante la fase de aumento de temperatura (fisuras internas) como durante el enfriamiento (fisuras en la superficie). Para prevenirlo, la temperatura de colocación del hormigón no debe superar los 15 °C, siendo preferible que esté alrededor de los 5 °C. Además, la diferencia de temperatura entre dos puntos de la sección no debe exceder los 20 °C, lo que requiere el uso de protección térmica durante el curado.

En elementos protegidos de grandes cambios de humedad, como las cimentaciones de estructuras interiores, la temperatura máxima durante el proceso de fraguado no debería superar los 80 °C. Si se trata de estructuras exteriores que no están protegidas de los cambios de humedad, la temperatura no debería exceder los 70 °C. Para elementos especialmente expuestos a ciclos de hielo-deshielo, la temperatura no debería superar los 65 °C, e incluso menos en algunos casos. Esta temperatura máxima generalmente se alcanza entre las 12 y las 24 horas desde el amasado.

Para evitar los efectos perjudiciales del calor en el hormigón fresco, se pueden adoptar dos tipos de medidas: utilizar hormigón más frío y diseñar una mezcla adecuada en cuanto a componentes y dosificación. Pero este tipo de precauciones las estudiaremos en detalle en otro artículo.

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.