Control de la mejora de un suelo con ensayos de penetración dinámica

Prueba de penetración dinámica superpesada. https://www.gtklaboratorio.com/prueba-de-penetracion-dinamica-superpesada-en-bilbao

Para comprobar la efectividad de un tratamiento de mejora de suelos, tal y como pudiera ser la compactación dinámica, es necesario verificar que la mejora conseguida es suficientemente buena como para alcanzar los objetivos marcados por el proyecto correspondiente. Una forma económica y sencilla de ensayar el terreno en profundidad consiste en hincar un varillaje con una punta metálica, de forma que, contabilizando el número de golpes necesarios para hacer avanzar dicha punta una longitud determinada, se pudiese correlacionar dicho valor con las características geotécnicas del terreno. A este tipo de pruebas se les conoce con el nombre de ensayos de penetración dinámica.

El ensayo de penetración estándar o SPT (Standard Penetration Test) es quizás uno de los ensayos más frecuentes que se utiliza cuando se realizan sondeos de reconocimiento. De hecho, representan una importante fuente de datos acerca de la resistencia del terreno. Se trata de medir el número de golpes necesario para que se introduzca una cuchara cilíndrica y hueca muy robusta que, además, permite extraer una muestra alterada de su interior. Tanto la cuchara como la masa y la altura a la que caen están normalizadas. La ventaja del SPT es que se permite visualizar el terreno donde se ha realizado la prueba y permite su identificación, e incluso, si el terreno es cohesivo, obtener su humedad. Se trata de ensayos de bajo coste y de alta representatividad, especialmente para suelos granulares y mixtos. La descripción del ensayo se encuentra recogida en la norma UNE 103-800-92. El valor que se obtiene se denomina resistencia a la penetración estándar N30spt.

Este ensayo nace en 1927 cuando un sondista de la Raymond Concrete Pile propuso a Terzaghi contar el número de golpes necesarios para hincar 1 pie el tomamuestras que se utilizaba para obtener muestras en terrenos no cohesivos. Tras realizar un gran número de ensayos, Terzaghi y Peck (1948) publican sus resultados en su libro “Mecánica de suelos en la ingeniería práctica”. Esta prueba se ha difundido internacionalmente y existen numerosos estudios que permiten relacionar de forma empírica el valor N30SPT con las propiedades geotécnicas del terreno in situ. Sin embargo, gran parte de las correlaciones corresponden a terrenos arenosos, pues la presencia de gravas oscurece la interpretación de los resultados e incluso puede impedir la realización del ensayo. Por tanto, es un ensayo especialmente indicado para terrenos con una amplia fracción arenosa y lo es menos cuando existe una mayor proporción de finos o de gravas.

Uto y Fijuki (1981) recomiendan corregir el valor de la resistencia a penetración estándar cuando se ensaya a más de 20 metros de profundidad. Skempton (1986) propone factores de corrección a dicho valor en función de la profundidad del ensayo y del diámetro del sondeo, aunque estas correcciones se realizan para suelos granulares, puesto que para los cohesivos dicha influencia es despreciable. Otras correcciones independientes del sistema de ensayo se refieren al nivel freático (Terzaghi y Peck, 1948), a la presión de confinamiento (Gibbs y Holz, 1957), siendo objeto de distintos estudios que están resumidos en Liao y Whitman (1985).

En cuanto a las correlaciones de Nspt con los parámetros geotécnicos del terreno, Terzaghi y Peck (1948) publicaron las primeras correlaciones con la densidad relativa de arenas cuarzíticas, siendo modificadas posteriormente por Skempton (1986). Gibbs y Holtz (1957) comprobaron que se debía introducir la presión de confinamiento en dichas relaciones, y luego Meyerhof (1956) ajustó dichas relaciones. Otras correlaciones referidas al ángulo de rozamiento interno, deformabilidad o potencial de licuación pueden verse en Devicenzi y Frank (1995). Sin embargo, tal y como se comentó anteriormente, las correlaciones sobre terrenos cohesivos se han considerado meramente orientativas, debido a la dispersión de resultados. Sin embargo, hoy en día este criterio se está cuestionando y se están aceptando estas pruebas en todo tipo de terrenos.

Cuando lo que se quiere es disponer de un registro continuo para caracterizar un suelo en profundidad, se puede emplear la prueba de penetración dinámica superpesada o DPSH (Dynamic Probing Super Heavy). Las características del ensayo son distintas a las del SPT. Aquí se utiliza una punta cónica perpendicular al eje de penetración midiéndose el golpeo necesario para profundizar 20 centímetros. Sin embargo, se ha tratado de establecer una correlación entre ambos ensayos que, en el caso de las arenas, el factor de conversión entre ambos ensayos es próximo a la unidad, siempre que estemos entre los 5 y 30 golpes, y siempre que estemos a un máximo de 10 – 15 m, pues a partir de aquí la dispersión aumenta debido al efecto de rozamiento de las varillas, que empieza a ser importante. En el caso de la correlación entre el ensayo Borros o DSPH y el SPT en arcillas, se puede consultar el trabajo de Dapena et al (2000).

Son muchas las correlaciones que se han encontrado entre los ensayos a penetración dinámica. Las equivalencias entre los ensayos parten de una relación de semejanza entre la energía de hinca. Un resumen de los parámetros geomecánicos obtenidos a partir de estos ensayos aplicado a suelos mixtos cohesivos-granulares puede verse en Parra y Ramos (2006).

Todo ello nos lleva a la siguiente conclusión: no es muy fiable establecer correlaciones entre los distintos ensayos de penetración dinámica, especialmente cuando el suelo empieza a ser cohesivo. El tema se complica mucho más cuando el terreno no es natural, sino que se trata de un relleno antrópico heterogéneo. Ello obliga a realizar un estudio en profundidad para establecer dichas correlaciones, siendo aconsejable efectuar un penetrómetro de contraste al lado de un sondeo con SPT.

Os dejo a continuación varios vídeos al respecto de estos ensayos.

También os dejo la maniobra completa del ensayo SPT.

Referencias

  • Armijo, G.; Blanco, M.A. (2017). Diseño y verificación del tratamiento de mejora del terreno mediante compactación dinámica. Aplicación a un caso real. Interempresas.net.
  • Devincenzi, M.; Frank, N. (1995). “Ensayos Geotécnicos in situ”, Igeotest, Figueres, Girona.
  • Gibbs, H.J.; Holtz, W.G. (1957). “Research on Determining the Density of Sands by Spoon Penetration Testing”. Proc. 4th Conf. On SMFE, London.
  • Liao, S.; Whitman, R.V. (1986). “Overburden Correction Factors for SPT in Sand”, Journal of Geotechnical Engineering, ASCE, Vol 112, Nº 3.
  • Menard, L.; Broise Y. (1976). “Theoretical and practical aspects of dynamic consolidation”, Ground Treatment by deep compaction, Institution of Civil Engineers, LONDON, pp. 3-18.
  • Meyerhof, G.G. (1956). “Penetration Test and Bearing Capacity of Cohesionless Soils”. Journal of Geotechnical Engineering, ASCE, Vol. 91.
  • Parra, F.; Ramos, L.L. (2006). “Obtención de parámetros geomecánicos a partir de ensayos a penetración dinámica continua en suelos mixtos cohesivos-granulares”. Ingeopres: Actualidad técnica de ingeniería civil, minería, geología y medio ambiente, 145: pp. 20-24.
  • Skempton, A.W. (1986). “Standard Penetration Test Procedure and Effects in Sandsof Overburden Pressure, Relative Density, Particle Size, Ageing and Overconsolidation”. Geotechnique, 36, pp. 425-437.
  • Terzaghi, K.; Peck, R.B. (1948). “Soil Mechanics in Engineering Practice”. Ed. John Wiley and Sons, New York.
  • Uto, K.; Fuyuki, M. (1981). “Present and Future Trend on Penetration Testing in Japan”, Japanese Soc. SMFE.
  • Dapena, E.; Lacasa, J. García, A. (2000). “Relación entre los resultados de los ensayos de penetración dinámica Borros DPSH y el SPT en un suelo arcilloso”. Actas del Simp. sobre geotecnia de las infraestructuras lineales. Soc. Española de Mec. del Suelo e Ing. Geotécnica.
  • Yepes, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • Yepes, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación dinámica

Figura 1. Compactación dinámica. https://civildigital.com/ground-improvement-techniques-complete-list-of-methods-classifications/

La compactación dinámica (“dynamic compaction”, DC) es una técnica que mejora la capacidad portante de los suelos mediante al dejar caer una masa desde cierta altura. El nombre de compactación dinámica no refleja con exactitud los procesos reales de carga y transmisión de energía, por lo que también suele llamarse compactación dinámica profunda (“deep dynamic compaction”). Uno de los mitos de la compactación dinámica es que se trata de un tratamiento superficial del suelo debido a que las cargas se aplican en la superficie. Pero, a diferencia de la compactación superficial, es un proceso de densificación que llega a profundidades de 10-12 m. Tras el impacto, se crean cráteres de hasta dos metros o más de profundidad, que deben ser rellenarse y compactar. La densificación en profundidad se produce como resultado de la energía de las ondas dinámicas que se transmite a través del suelo. El tratamiento se aplica en edificios industriales, plataformas portuarias y aeroportuarias, terraplenes viarios y ferroviarios, etc. Además, es idóneo para obras extensas, con rendimientos de más de 10000 m2 por mes.

El principio de dejar caer grandes masas sobre la superficie del suelo para mejorarlo en profundidad se ha empleado desde hace tiempo. Menard y Broise (1976) hacen referencia a dibujos muy antiguos que sugieren que la técnica se utilizó en China desde hace centurias. Los romanos también la utilizaron en sus construcciones antes del 100 a.C. En los Estados Unidos se empleó un antiguo cañón para compactar ya en el año 1871 (Lundwall, 1968). También en la antigua Unión Soviética se compactaron loess con buenos resultados, si bien con pesos y alturas de caída mucho menores a las actuales (Faraco, 1980). En los años 40 se empleó este procedimiento constructivo en la construcción de un aeropuerto en China y un área portuaria en Dublín. Sin embargo la técnica actual se puede fechar en 1970, cuando Louis Menard patentó este método en Francia, favorecido sin duda por la aparición de las gigantescas grúas montadas sobre orugas. En Gran Bretaña y en Estados Unidos se empezó a utilizar en los años 1973 y 1975, respectivamente.

Hoy en día, es habitual el uso de pesos que oscilan entre 1 y 30 t, con alturas de caída de entre 10 y 30 m, a veces más. Los pesos son de acero para soportar las fuerzas dinámicas repetitivas. Normalmente, se utiliza una grúa para dejar caer el peso, aunque también existen equipos especiales. Las grúas deben permanecer en buenas condiciones pues no se diseñan para cargas dinámicas repetitivas.

Figura 2. Esquema de la ejecución de la compactación dinámica. Cortesía de Menard

Este tipo de tratamiento depende de las características del suelo y de la energía empleada. En principio, se puede utilizar en suelos granulares, saturados o no. Asimismo, ofrece buenos resultados en rellenos artificiales heterogéneos, que difícilmente se mejorarían con otros procedimientos. La mejora se traduce en un aumento de la capacidad portante y una reducción de los asientos, incluidos los diferenciales. Es un método bien adaptado y empleado para prevenir la licuefacción de suelos. La compactación dinámica permite, incluso, cimentar con zapatas convencionales, pues proporciona una capacidad portante al suelo de hasta 100-150 kPa. Además, es una solución económica cuando se compara con la excavación y sustitución del suelo, la precarga o las inyecciones. Los costes son aproximadamente 2/3 respecto a las columnas de grava, con un ahorro de hasta el 50% comparado con la compactación profunda. Se pueden conseguir rendimientos de 300 a 600 m2/día (García Valcarce et al., 2003).

La compactación dinámica se emplea para densificar suelos flojos, saturados y sin cohesión, reduciendo la potencial licuefacción del terreno. En este sentido, el proceso de densificación es similar al de la vibro-compactación. Es una de las mejores alternativas para densificar rellenos heterogéneos y escombros, que pueden causar problemas a otras técnicas como las columnas de grava o las inclusiones rígidas. También se podría emplear para suelos finos cohesivos, sin embargo, el éxito en este caso es más dudoso, requiriendo atención la generación y disipación de las presiones intersticiales. En ocasiones, esta técnica se emplea de forma conjunta con las columnas de grava para facilitar la disipación de las presiones intersticiales (Bayuk y Walker, 1994).

Los patrones de caída suelen consistir en cuadrículas primarias y secundarias (y ocasionalmente terciarias), como las que se muestran en la Figura 3. Es habitual un espaciamiento entre puntos de impacto de 2 a 3 m en las mazas pequeñas y más de 10 m en el caso de mazas pesadas. Una vez que la profundidad del cráter alcanza aproximadamente 1 m, la abertura se rellena con material granular antes de proceder a nuevas caídas en ese lugar.

Figura 3. Fases en la compactación dinámica. Cortesía de Menard

El tratamiento se da en varias pasadas y la profundidad alcanzada por la densificación se puede relacionar con la energía del golpe mediante la siguiente fórmula empírica (Mayne et al, 1984):

donde:

M = masa de la maza (toneladas)

H = altura de caída (metros)

D = profundidad efectiva de la compactación (metros)

k = factor empírico que depende del tipo de suelo y de las características del tratamiento, que varía entre 0,35 (arenas limosas y limos con IP=10%) y 0,6 (gravas y arenas limpias), aunque un valor usual puede ser 0,5.

Teniendo en cuenta lo anterior, y conociendo las capacidades máximas de las grúas normalmente disponibles (H=30 m, M=20 t), la profundidad efectiva máxima varía entre 7 y 12 m, aproximadamente (Armijo y Blanco, 2017). No obstante, se pueden alcanzar profundidades de tratamiento de hasta 30 m (García Valcarce et al., 2003).

Durante la compactación existe un efecto instantáneo al reducirse el índice de huecos tras el impacto, y un efecto diferido en el caso de suelos saturados al disiparse la sobrepresión intersticial y reestructurarse el material a un estado más denso.

Con todo, la compactación dinámica presenta algunos inconvenientes. En efecto, se necesita una superficie mínima de 15000 m2 para garantizar cierta rentabilidad económica y, además, se debe dejar una distancia mínima de 20 a 30 m a las estructuras próximas para evitar daños (García Valcarce et al., 2003).

El procedimiento de cómo se realiza la compactación dinámica está ampliamente descrito en el trabajo de Liausu (1984).

He grabado un pequeño vídeo explicativo de esta técnica de mejora de terrenos.

A continuación tenéis un folleto explicativo de Menard.

Descargar (PDF, 3.27MB)

Os dejo un vídeo explicativo del procedimiento constructivo que espero que os sea de interés.

Referencias

  • Armijo, G.; Blanco, M.A. (2017). Diseño y verificación del tratamiento de mejora del terreno mediante compactación dinámica. Aplicación a un caso real. https://www.interempresas.net/ObrasPublicas/Articulos/195230-Diseno-verificacion-tratamiento-mejora-terreno-mediante-compactacion-dinamica-Aplicacion.html
  • Bayuk, A.A.; Walker, A.D. (1994). “Dynamic Compaction. Two Case Histories Utilizing Innovative Techniques.” In-Situ Deep Soil Improvement, ASCE, Geotechnical Special Publication No.45.
  • Faraco, C. (1980). “Mejora del terreno de cimentación”, en Jiménez Salas (coord.) Geotecnia y Cimientos III, primera parte, pp. 489-531.
  • Findlay, J.D.; Sherwood, D.E. (1986).”Improvement of a hydraulic fill site in Bahrain using modified heavy tamping methods” Building on Marginal & Derelict Land., May 7-9.
  • García Valcarce, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • Liausu, P. (1984) Renforcement de Couches de Sol Compressibles par Substitution Dynamique, In-Situ Soil and Rock Reinforcement Conference, Paris.
  • Lundwall, N.B. (1968). The Saint George Temple, in “Temples of the Most High, Bookcraft, Salt Lake City, Chapter 3, p. 78.
  • Mayne, P.W.; Jones, J.S.; Dumas, J.C. (1984). Ground response to dynamic compaction. Journal of Geotechnical Engineering, ASCE, Vol. 110(6), pp. 757-774.
  • Ministerio de Fomento (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • Menard, L.; Broise Y. (1976). “Theoretical and practical aspects of dynamic consolidation”, Ground Treatment by deep compaction, Institution of Civil Engineers, LONDON, pp. 3-18.
  • Skempton, A.W. (1986). Standard Penetration Test Procedures and the Effects in Sand of Overburden Pressure, Relative Density, Particle Size, Ageing and Overconsolidation. Geotechnique, 36, pp. 425-437.
  • Uto, K.; Fuyuki, M. (1981). “Present and Future Trend on Penetration Testing in Japan”, Japanese Soc. SMFE.
  • Varaksin, S. (1981). “Recent development in soil improvement techniques and their practical applications”. Sol. Soils, Nº 38/39.
  • Yepes, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • Yepes, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.