Las dovelas prefabricadas utilizadas en la construcción de puentes por voladizos sucesivos se colocan mediante un aparato de elevación y se unen entre sí mediante un adhesivo de alta resistencia a base de resinas epoxi. Para encolar las dovelas, se mantiene la dovela suspendida sobre el tablero y próxima a la dovela anterior y se coloca la resina. La junta de la dovela se trata en acopio con chorro de arena o agua para eliminar desconchones, polvo, aceites y similares. La junta debe estar seca, aplicándose si fuera necesario calor. Se extiende la resina, como si fuera una pintura o un enlucido, en la cara posterior de la dovela suspendida, con un consumo entre 3 y 4 kg/m², que corresponde a una capa de unos 2 mm de espesor. Este procedimiento de construcción de grandes luces mediante el sucesivo encolado de dovelas requiere la intervención de personal altamente especializado.
En las fotografías se muestra el Puente de Castejón (1972), de la oficina de proyectos Carlos Fernández Casado S.L., construido por dovelas prefabricadas de 10 toneladas montadas con blondín; desde una pila se avanzó en voladizo único a partir de un vano lateral construido sobre cimbra, y desde la otra se avanzó en voladizos compensados de 50 m de longitud. Las dovelas se pegaron con resina epoxi en vez de mortero, solución que se utilizó en todos los puentes siguientes. Cada voladizo estaba formado por dos cajones que se montaban con dovelas unicelulares unidas in situ con la losa superior.
Las resinas presentan las siguientes características:
Se forman por dos componentes, la resina (base) y en endurecedor (reactor).
Existen resinas de acción rápida, media y lenta, correspondientes a la temperatura ambiente en la aplicación: 5-15 °C, 15-25 °C y 25-40 °C, respectivamente.
El tipo de resina determina el tiempo de aplicación, es decir, el transcurrido entre la terminación de la mezcla y el instante en que no se puede aplicar, variando de unos 18 minutos a 35 °C, a un máximo de 40 minutos a 5 °C.
Se dispone entre 45 y 60 minutos, dependiendo de la temperatura, para comprimir las dovelas entre sí y expulsar la resina.
Aunque la resina presenta una resistencia a tensión tangencial superior a 4 MPa y de 75 MPa a compresión, esta resistencia no se considera en el cálculo, relegando la función de la resina a su actuación como lubricante durante el acoplamiento de las dovelas y como impermeabilizante de la junta.
La construcción por tramos o dovelas, prefabricadas o ejecutadas “in situ”, que avanzan en voladizo sobre las ya erigidas. El tablero avanza por tramos sucesivos soportando la parte construida el peso propio del tramo siguiente. La construcción en voladizo permite liberarse de cimbras y andamios, adaptándose especialmente a puentes con pilas muy altas, con valles extensos y profundos, en ríos con crecidas violentas y repentinas o bien cuando hay que dejar libre un gálibo para la circulación o la navegación.
Este procedimiento se puede usar en puentes rectos, arco y atirantados, de hormigón o metálicos. Las dovelas prefabricadas se izan con medios de elevación potentes y se unen a las anteriores. Si se ejecutan hormigonando “in situ”, existe un carro de avance que se apoya en las dovelas anteriores, asegurando la estabilidad de cada etapa con el pretensado de cables cuando la nueva dovela adquiere la resistencia suficiente.
La técnica del voladizo se utilizó en el siglo XIX en el lanzamiento de obras metálicas, en la construcción de grandes arcos y “cantilever”. Con la llegada del hormigón armado, este procedimiento empezó a interesal a los constructores. El primer puente construido por voladizos sucesivos fue el puente sobre el río Peixe en Herval (Brasil), data de 1930, siendo su autor Emilio Henrique Baumgart; se trata de un puente de hormigón armado de dintel continuo de tres vanos, con 68 m de luz en el central. En este puente las armaduras del tablero se extendían mediante manguitos roscados a medida que avanzaba el hormigonado. Sin embargo, con hormigón armado se necesitaban muchas armaduras para asegurar la resistencia de las ménsulas y aparecía una fuerte fisuración en el extradós del tablero, lo que provocó que el sistema no tuviese mucho éxito.
Sin embargo, con el hormigón pretensado el sistema empezó a desarrollarse plenamente. Así, Freyssinet empezó a utilizar el pretensado para el montaje en voladizo en las primeras dovelas del puente de Luzancy en 1945 y de los cinco puentes sobre el Marne, anclados en los estribos por pretensado. Pero es Finsterwalder quien inicia definitivamente la técnica del voladizo en 1950 en el puente de Balduinstein, sobre el Lahn, con 62,10 m de luz libre, cuando aplica esta tecnología con un pretensado a base de barras que se unían entre sí mediante un sistema roscado. En España, fue empleado en sus orígenes en el puente de Almodóvar (1962) y el de Castejón (1968).
En la construcción con dovelas prefabricadas se pueden distinguir tres etapas. La primera generación, en los años sesenta, las dovelas llevaban juntas de mortero de cemento, llave única a cortante y cables anclados en la propia junta. La segunda se caracteriza por la prefabricación conjugada, el empleo de resinas epoxi en las juntas, las llaves múltiples para el cortante y el anclaje de los cables en el interior de la dovela en unos bloque dispuestos al efecto. La tercera generación, iniciada en Francia, utiliza el pretensado exterior y las almas de celosía (puente de Bubiyán en Kuwait, 1983).
La construcción por voladizos sucesivos puede realizarse con una única dirección de avance, la denominada construcción evolutiva; o bien con crecimiento simétrico del tablero a ambos lados de las pilas, voladizos compensados. En el primer caso, se suprime uno de los inconvenientes de la progresión simétrica del tablero, con la consecuente multiplicación de equipos (uno por cada frente de avance) o su traslado.
El campo habitual de aplicación de los puentes construidos por voladizos sucesivos abarca luces entre 50 y 250 m. Sin embargo, y de forma excepcional, pueden encontrarse puentes con luces de 400 m construidos por voladizos sucesivos con dovelas atirantadas de forma provisional. Por debajo de 50 m de luz tampoco es muy corriente. A partir de los 200-300 m, se entra en competencia con los puentes atirantados. El rango de luces usual para dovelas “in situ” es de 125 a 175 m, mientras que para las prefabricadas es algo menor, de 60 a 130 m.
Con este post vamos a seguir divulgando procesos constructivos históricos, en este caso, con el arco. En otros posts anteriores ya comentamos el origen del arco y su diseño. Espero que os gusten estas pinceladas de procedimientos de construcción ya históricos. Os dejo algunas referencias bibliográficas (Yepes, 2010) y enlaces a otras páginas web para que podáis ampliar la información, que es necesariamente breve para el formato de este post.
Los romanos construyeron con arcos de medio punto. Esta disposición geométrica era de composición cómoda, pues resultaba muy sencillo trazar la directriz y relativamente fácil construir la cimbra —normalmente compuesta por al menos dos arcos de círculo de madera sólidamente triangulados—. Las cimbras se construían con cerchas o armaduras de madera, unidas por correas sobre las que se clavaban tablas o listones para formar el forro o superficie de apoyo para las dovelas. El perfilado de la superficie de asiento se terminaba por medio de una ligera capa de mortero, yeso o barro (Moreno, 1985).
La cimbra, por tanto, es el elemento esencial para dar la forma al arco. Esta estructura auxiliar se apoya directamente sobre el suelo mediante unos soportes, bien sobre unos huecos —mechinales— o en unas piedras salientes —canes— que solían dejarse a la altura del arranque de las bóvedas para ahorrar madera (Adam, 2002). Con esta última solución, los constructores añadían un valor ornamental a las cornisas dispuestas a nivel de la última hilada horizontal. Para economizar materiales, a veces los constructores ensamblaban algunas bóvedas por tongadas paralelas yuxtapuestas, sin cruzar las juntas. Ello permitía levantar cada uno de los arcos contiguos separadamente con la misma cimbra, que se desplazaba lateralmente. Incluso se podían separar los arcos paralelos, y haciendo de cimbra los arcos ya construidos, colocar posteriormente unas losas de complemento. En otras ocasiones, se podían disponer varias roscas de dovelas, así se conseguía que, una vez colocada la primera, esta resistía el peso de las demás, con lo cual se podía aligerar la cimbra.
El trabajo de construir una cimbra comenzaba con la elección del tipo de árboles que presentaran un porte y una madera adecuada. En la Hispania romana era frecuenta el uso del roble, del castaño, del fresno, del olmo, la haya, el abeto y el álamo. Tras el talado del árbol, se retiraban las ramas dejando un tronco que era posteriormente transformado mediante hacha y sierra en tablones. Para construir la cimbra, una vez ensamblada, se situaba en su posición mediante unos andamios construidos en la obra. Hasta el siglo XVIII, el cálculo de los grosores de las piezas de madera para su construcción se hacía mediante reglas prácticas validadas por la experiencia. Así, en el tratado de Palladio (1570), se establecen tipologías básicas de puentes de madera y se señala que las dimensiones en un caso particular serán proporcionales a allí señaladas.
Una vez instalada la cimbra, se comenzaban a colocar las dovelas de forma simétrica desde los salmeres o arranques hasta llegar a la última pieza, la clave. El avance simétrico se realizaba para repartir convenientemente el peso de la sillería sobre los pilares y evitar una posible deformación indebida de la cimbra. A partir de ese momento, la cimbra ya puede retirarse, pues el arco funciona por sí solo.
La construcción de las bóvedas romanas se podía ejecutar arco a arco, cimbrando de forma independiente cada uno de ellos, puesto que las pilas eran tan robustas que eran capaces de contrarrestar el empuje desestabilizante de la bóveda adyacente recién descimbrada. Se podía empezar la construcción desde uno de los extremos y terminar en el otro, o bien empezar por ambos extremos a la vez. Este aspecto permitía un gran ahorro de madera en las cimbras. El resultado era la construcción de arcos de radio constante, con dovelas idénticas (Monleón, 1986). Otra ventaja adicional es que ha permitido la supervivencia de los actuales puentes romanos, puesto que el colapso de una de las bóvedas en caso de conflicto bélico, o bien a causa de la socavación de una de sus pilas, permitiría que el resto de las bóvedas permaneciesen estables reconstruyéndose solo la parte dañada (Arenas, 2002).
Ya entrados en el siglo XVI, la construcción de las bóvedas seguía realizándose a la romana, es decir, reutilizando la misma cimbra en varios arcos iguales. En el caso de disponer un gran arco central, sus empujes se recogían construyendo previamente los arcos laterales. El ensamblaje de la cimbra no se realizaba con la anchura total que fuera a tener la bóveda, sino que se hacía por fases, desde los laterales al centro, guardando la simetría. Como el viento podría llevar al traste esta fase constructiva, se arriostraban las estrechas cimbras mediante sogas de cáñamo. Además, para garantizar el correcto asiento de las dovelas, se cubría la cimbra con una capa de yeso.
El izado de las dovelas sobre la cimbra se ejecutaba mediante una grúa. Algunos de estos ingenios fueron proyectados por los propios arquitectos o ingenieros en las obras, como es el caso de Juan de Herrera, que diseñó sus propias grúas para las obras del Monasterio de El Escorial, tras la muerte del arquitecto Juan Bautista de Toledo, en 1567. Los ingenieros romanos no tuvieron que imaginar nuevos procedimientos para izar cargas pesadas, pues los griegos ya disponían de máquinas elevadoras o machinae tractores, perfectamente ideadas para cualquier carga del momento (Adam, 2002). Una grúa muy utilizada eran las provistas de ruedas de pisar que pivotaban sobre un eje vertical, que permitía orientarlas convenientemente. La polea y el torno elevador se asociaban para formar una máquina elevadora que ha mantenido su éxito durante mucho tiempo: la cabria, constituida por un par de piezas de madera unidas en ángulo agudo y sujetas mediante tirantes de fijación. Estas máquinas disponían de unas tenazas de hierro, empleadas desde los romanos, que sujetaban los sillares.
Los extremos del puente, los estribos, se construían en primer lugar, pues la primera bóveda empezaba a transmitir sus empujes en cuanto se descimbraba. Se componen de un muro frontal, de aparejo similar al de las pilas, y unos muros laterales que se denominan “de acompañamiento” en el caso de ser paralelos al puente y “aletas” en caso contrario. Estos muros contienen el relleno del intradós o el derramamiento de tierras, y también sirven para encauzar la corriente del río (León y Espejo, 2007).
En otros posts completaremos información acerca del descimbrado de la bóveda y terminación de la calzada de este tipo de puentes de arcos de fábrica.
ADAM, J.P. (2002). La construcción romana. Materiales y técnicas. León: Editorial de los Oficios.
ARENAS, J.J. (2002). Caminos en el aire: los puentes. Colección ciencias, humanidades e ingeniería. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.
LEÓN, J.; ESPEJO, S. (2007). Aspectos resistentes de los puentes romanos, en Memorias del Seminario Puente de Alcántara: Restauración de puentes romanos. Fundación San Benito de Alcántara.
MONLEÓN, S. (1986). Curso de puentes, Vol. I. Colegio de Ingenieros de Caminos, Canales y Puertos. Valencia, 216 pp.
MORENO, F. (1985). Arcos y bóvedas. Ed. CEAC, 15ª edición, Barcelona.
YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Un análisis histórico, estético y constructivo a las obras de fábrica. Universitat Politècnica de València. Inédito.
La luz máxima económica para puentes construidos mediante dovelas prefabricadas es de unos 150 m. Por encima de 120 m, el coste de los dispositivos de colocación, en particular la viga de lanzamiento, crece rápidamente, al igual que el peso de las dovelas. En cuanto a luces mínimas, se han construido pasos superiores de 18 m con este sistema. Además, la prefabricación se ve favorecida con el número de obras idénticas a construir. Otro factor a tener en cuenta es la superficie total del tablero. Así, y dependiendo de la disponibilidad de los medios auxiliares de la empresa, se necesitaría un mínimo de 5000 m2 de tablero para considerar la utilización de dovelas prefabricadas mediante grúas, cerchas o puentes-grúa, e incluso con equipos móviles que se desplacen por el tablero. En cambio, es necesario un mínimo de 10000 m2 de tablero para colocar las dovelas prefabricadas con una viga de lanzamiento.
En cuanto a las tendencias actuales en este tipo de puentes, podemos citar las siguientes:
Supresión de la cola en las juntas: Su eliminación presenta ventajas, no solo por el coste de la cola, sino por reducir el tiempo de ensamblaje al permitir la unión en una sola operación de todas las dovelas de un vano. Sin embargo, su supresión significa renunciar al efecto rubricante e implica una mayor precisión en el ensamblaje de las dovelas para no fisurar las llaves al concentrarse sobre ellas los esfuerzos. La cola permite el reparto de las cargas y la eliminación de los puntos duros originados por rebabas, retracciones diferenciales u otros defectos. Además, las recientes investigaciones muestran que la resistencia a rotura de las uniones con junta seca son inferiores a las de juntas con cola.
Elementos prefabricados como encofrado: En paramentos con formas complejas o para acabados de gran calidad, a veces se utilizan paneles prefabricados montados sobre cimbra para su uso como encofrado perdido. Sin embargo, esta solución es más cara.
Prefabricación parcial: En obras de tamaño medio muchas veces no se puede amortizar la instalación de prefabricación de las dovelas, por lo que se recurre a prefabricar únicamente las almas y dejar para un hormigonado “in situ” las losas superior e inferior. Los puentes de Brotonne y de Clichy se construyeron con almas prefabricadas. Ello permite reducir la potencia de los medios de montaje, así como la posibilidad de dar continuidad a las armaduras pasivas de la losa inferior y en buena parte de la superior.
Pretensado exterior: Permite eliminar las operaciones de montaje y replanteo de vainas, disminuyen las anchuras de almas y se reducen las pérdidas por rozamiento, todo lo cual mejora la eficiencia del pretensado.
El tratamiento térmico del hormigón durante la prefabricación de las dovelas tiene como objetivo una aceleración de los procesos de fraguado y de endurecimiento para que el desencofrado se realice lo ante posible, siempre que la resistencia final sea similar a la del hormigón que endurece sin este tipo de tratamiento. El calentamiento se puede realizar mediante estufa tradicional o bien a través de los encofrados por resistencias eléctricas o por vapor a baja presión.
Para evitar que el endurecimiento acelerado no merme la resistencia final se debe utilizar preferentemente un cemento portland artificial, cuyo contenido en C3A sea menor al 11% y cuya relación C3S/C2S sea superior a 3. Además, el agua debe presentar una temperatura de 35ºC en el momento de la fabricación. Asimismo, se deberían utilizar encofrados con rigidez suficiente para oponerse a las dilataciones del hormigón en fase plástica en el momento del calentamiento.
El ciclo de tratamiento térmico debe cuidarse para evitar una bajada en la resistencia a largo plazo del hormigón, que normalmente puede estar entre el 5 y el 15%. Así un ciclo debería contemplar un periodo de preparación de 2-3 horas con el hormigón a temperatura ambiente, una posterior subida de temperatura a una velocidad inferior a 20ºC por hora, un escalón de tratamiento térmico que no pase de 80ºC (normalmente a 65ºC) con una duración que depende de las dimensiones de la sección y características del hormigón y una bajada de temperatura a un ritmo similar al realizado durante la subida. Por tanto, no hay que acortar el periodo de preparación, no acelerar la velocidad de subida de la temperatura y no elevar la temperatura máxima del tratamiento. A todo caso, la temperatura máxima queda limitada en función del ambiente expuesto y de la composición del cemento (ver UNE-EN 13369:2013).
Referencia:
AENOR (2013): UNE-EN 13369:2013 Reglas comunes para productos prefabricados de hormigón.