La fracturación hidráulica, comúnmente conocida como fracking, es una técnica que se utiliza para extraer hidrocarburos, como el gas natural y el petróleo, de formaciones rocosas subterráneas de baja permeabilidad, especialmente lutitas o esquistos. Este método ha revolucionado la industria energética, ya que permite acceder a recursos que antes eran inaccesibles, contribuyendo significativamente a la diversificación de las fuentes de energía.
El fracking consiste en perforar un pozo vertical hasta alcanzar la formación rocosa objetivo. Una vez en la profundidad deseada, la perforación se desvía horizontalmente, extendiéndose varios kilómetros dentro de la capa de lutita. A través de este pozo se inyecta una mezcla de agua, arena y productos químicos a alta presión. Esta presión fractura la roca, creando fisuras por las que se liberan los hidrocarburos atrapados, que son posteriormente extraídos a la superficie.
Evolución histórica de la fracturación hidráulica
El desarrollo del fracking no es un fenómeno reciente, sino el resultado de una evolución que se inició hace dos siglos. En 1821, la perforación del primer pozo comercial de gas de lutita cerca de Fredonia, en Nueva York, marcó el inicio de la explotación de este tipo de gas. Aunque este recurso era útil para la iluminación doméstica, no adquirió relevancia económica hasta mucho después. No fue hasta después de la Segunda Guerra Mundial, en un contexto de crecimiento industrial y demanda energética acelerada, cuando el gas natural comenzó a jugar un papel clave.
En las décadas de 1980 y 1990, los productores se enfrentaron al declive de los yacimientos convencionales y comenzaron a buscar alternativas en formaciones de baja permeabilidad, como el gas de las capas de carbón (CBM) y el gas de lutita (shale gas). Sin embargo, estos recursos presentaban limitaciones tecnológicas significativas, especialmente en lo que respecta a la capacidad para extraer hidrocarburos atrapados en micro o nanoporos. No fue hasta 2005 cuando la combinación de fracturación hidráulica y perforación horizontal demostró plenamente su viabilidad, lo que supuso un cambio de paradigma en la industria energética global.
El fracking ha transformado el panorama energético de países como Estados Unidos, donde se ha convertido en uno de los principales productores de petróleo y gas a nivel mundial. Sin embargo, esta técnica ha generado debates y regulaciones en diversas regiones debido a sus implicaciones ambientales. En Europa, por ejemplo, se ha analizado la dependencia del gas obtenido por fracking en otros países y se han criticado estas prácticas.
La historia del fracking es también una historia de innovación. Desde la mejora de los motores de fondo y los sistemas de telemetría hasta el diseño de fracturas más eficientes, cada avance ha contribuido a aumentar la recuperación de hidrocarburos y a reducir los costes asociados. Sin embargo, el desarrollo de estas tecnologías ha planteado también nuevos desafíos ambientales y sociales que no existían en las explotaciones convencionales.
Fundamentos técnicos de la fracturación hidráulica
El fracking combina dos tecnologías clave: la perforación horizontal y la fracturación hidráulica. Ambas se han desarrollado para abordar el desafío que supone la extracción de hidrocarburos de yacimientos de baja permeabilidad, caracterizados por una porosidad extremadamente reducida y escasas conexiones entre los poros. Este tipo de formación geológica requiere la creación artificial de caminos por donde los hidrocarburos puedan fluir hacia los pozos de producción.
- La perforación horizontal: Este enfoque, en contraste con la perforación vertical tradicional, permite acceder a una zona más extensa de la formación productora. Un pozo puede extenderse lateralmente varios kilómetros dentro del yacimiento, lo que aumenta considerablemente la cantidad de hidrocarburos que pueden recuperarse. Esto es especialmente relevante en yacimientos continuos como el gas de lutita, donde los hidrocarburos están distribuidos uniformemente en capas sedimentarias.
- La fracturación hidráulica: Este proceso consiste en inyectar un fluido compuesto de agua, arena y aditivos químicos a alta presión. El agua actúa como medio de transporte, la arena como material de soporte de fracturas y los aditivos cumplen diversas funciones, como reducir la fricción, evitar la corrosión y mejorar la eficiencia del proceso. La fracturación crea redes de microfracturas en la roca madre, lo que aumenta la permeabilidad y permite que el gas o el petróleo fluyan hacia el pozo.
- Avances tecnológicos adicionales: El uso de la telemetría avanzada (logging while drilling y measurement while drilling) proporciona datos en tiempo real sobre las condiciones del subsuelo. Esto permite ajustar la dirección del pozo y optimizar el diseño de las fracturas para maximizar la producción. Además, las fracturas multietapa, que dividen la sección horizontal del pozo en segmentos individuales, han demostrado ser una estrategia eficaz para estimular formaciones de gran tamaño.
Uno de los desafíos de los yacimientos de gas no convencional es el rápido declive de la producción. Este fenómeno obliga a perforar nuevos pozos de manera constante para mantener niveles de producción comercialmente viables. Por lo tanto, la explotación del gas de lutita es una actividad intensiva y duradera que requiere una planificación meticulosa y una inversión considerable.
Impactos ambientales del fracking
La fracturación hidráulica ha generado preocupaciones significativas en torno a su impacto ambiental, especialmente en lo que respecta al consumo de agua, la contaminación de acuíferos, la emisión de gases de efecto invernadero y la sismicidad inducida. Estas preocupaciones están respaldadas por pruebas documentadas que detallan tanto los riesgos como las medidas de mitigación disponibles.
- Consumo de agua: Cada pozo de fracturación hidráulica requiere entre 8000 y 15 000 m³ de agua, dependiendo de factores como la profundidad del pozo y el número de etapas de fracturación. Esta cantidad de agua es considerable, particularmente en regiones con recursos hídricos limitados. Para mitigar este impacto, se ha propuesto reutilizar las aguas de retorno y utilizar fuentes no convencionales de agua, como las salobres. Es esencial investigar previamente la disponibilidad de agua superficial y subterránea para garantizar la sostenibilidad del proyecto.
- Contaminación de acuíferos: Aunque las zonas de fractura están separadas de los acuíferos por capas de roca impermeable, las fugas a través de defectos en la cementación de los pozos suponen un riesgo. Los fluidos de fracturación, que contienen metano y aditivos químicos, pueden migrar hacia los acuíferos superficiales en caso de fallo estructural. Por ello, es esencial realizar un seguimiento continuo y diseñar adecuadamente los pozos para prevenir estos incidentes.
- Sismicidad inducida: La fracturación hidráulica puede causar micro-sismos de baja intensidad, imperceptibles sin instrumentos especializados. En raras ocasiones, la inyección en áreas cercanas a fallas activas ha generado sismos de mayor magnitud, aunque el límite superior para estos eventos es de 3 en la escala de Richter. La evaluación geológica previa y el monitoreo continuo son fundamentales para minimizar este riesgo.
- Gestión de aguas residuales: Las aguas de retorno contienen minerales disueltos, compuestos químicos y, ocasionalmente, materiales radiactivos naturales (NORM). Las estrategias de mitigación incluyen el tratamiento de residuos, la evaporación y la reutilización del agua reciclada. Estas medidas no solo reducen la demanda de agua dulce, sino que también minimizan el impacto ambiental.
Retos sociales y económicos
El desarrollo de la fracturación hidráulica enfrenta múltiples retos sociales y económicos. En términos sociales, la aceptación pública es fundamental. La percepción de riesgo asociada a la contaminación del agua, la sismicidad y la ocupación del terreno puede generar resistencia en las comunidades locales. Por otro lado, el fracking ofrece beneficios económicos significativos, como la reducción de la dependencia energética de las importaciones y la creación de empleo.
En España, las estimaciones de recursos prospectivos varían considerablemente. Según la Agencia Estadounidense de Información Energética (EIA), el país cuenta con 226 bcm de gas técnicamente recuperable, mientras que otros estudios elevan esta cifra a 1978 bcm. Estas reservas tienen el potencial de abastecer la demanda nacional durante décadas, aunque su desarrollo enfrenta desafíos como la falta de infraestructura y los altos costes de perforación.
Desde el punto de vista económico, el fracking es competitivo. El coste medio de extracción se estima en 5 céntimos de euro por kWh, lo que lo convierte en una opción viable frente a otras fuentes de energía. Sin embargo, para garantizar la sostenibilidad del sector, los beneficios deben equilibrarse con los riesgos ambientales y sociales.
Conclusiones
La fracturación hidráulica es una tecnología innovadora que ha transformado la industria energética. Aunque ofrece oportunidades significativas para la diversificación y la seguridad energética, su implementación debe abordarse con un enfoque integral que contemple tanto los beneficios económicos como sus posibles impactos ambientales y sociales. Es necesario realizar una evaluación cuidadosa y aplicar regulaciones estrictas para mitigar riesgos y garantizar una explotación sostenible de los recursos naturales. El desarrollo de recursos no convencionales en España requerirá una planificación meticulosa, un marco regulatorio sólido y un compromiso transparente con las comunidades locales.
Al adoptar medidas de mitigación efectivas y avanzar en tecnologías más sostenibles, el fracking puede desempeñar un papel crucial en la transición hacia un sistema energético más diversificado y seguro, minimizando al mismo tiempo su impacto ambiental y social.
Os dejo algunos vídeos al respecto.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.