Maquinaria de bombeo de hormigón

Figura 1. Bomba sobre camión hormigonera Putzmeister.

En artículos anteriores ya comentamos aspectos sobre la colocación del hormigón mediante bombeo, así como del cálculo de la presión y potencia de bombeo. Ahora se trata de describir, muy brevemente, las máquinas de bombeo, impulsión y protección, que permiten colocar el hormigón en cualquier punto de la estructura, incluso en áreas difíciles o casi inaccesibles. Según su movilidad, se clasifican en estacionarias y móviles, y dentro de estas categorías, existen variantes según su uso.

  • Equipos estacionarios: Estas bombas se colocan al pie de obra y distribuyen el hormigón a través de tuberías presurizadas con aire comprimido y equipadas con cuatro gatos hidráulicos de estabilización que se fijan en el terreno. Su pluma de distribución es análoga a los móviles. Están montadas sobre un chasis de dos ruedas para facilitar su instalación y funcionamiento, y se fijan en su eje o sobre una bancada durante la operación. Además de bombear hormigón estructural, pueden utilizarse para proyectar enfoscados y hormigón de segunda capa, entre otros. Para usos temporales y cortos, suelen ser remolcadas. En este caso, se montan sobre un chasis de uno o dos ejes e incluyen pies estabilizadores.
Figura 2. Bomba estacionaria, con estabilizadores. https://www.maquinariacarran.cl/bomba-de-hormigon-cifa-pc307d/
Figura 3. Bomba estacionaria remolcada. https://www.sanyglobal.com/es_ar/bomba-estacionaria/HBT6006A-5.html
  • Equipos móviles o autobombas: Son bombas instaladas sobre el chasis de un camión, ya sea directamente mediante un bastidor que soporta todos los componentes necesarios para el bombeo, o a través de un semirremolque donde se monta dicho bastidor. Este bastidor incluye los elementos principales, como el grupo de bombeo, la pluma de distribución y los componentes auxiliares para su manejo: válvulas de seguridad, cuadro de control, palancas de accionamiento, telemando para controlar la pluma y zapatas estabilizadoras hidráulicas (4 o 6 unidades, en 2 o 3 ejes). También cuenta con un castillete giratorio que permite soportar y mover la pluma. Además, incorpora una tolva de recepción para recibir el hormigón que se va a bombear. Existen dos opciones para montar la autobomba: sobre un camión convencional o sobre un camión hormigonera. En este último caso, los componentes de la autobomba se adaptan al chasis del camión hormigonera y la tolva de recepción desaparece, ya que el grupo de bombeo toma el hormigón directamente de la cuba. Además, pueden bombear volúmenes de hasta 200 m³/h, aunque la capacidad promedio suele estar entre 40 y 60 m³/h. En el extremo del brazo se conecta una manguera flexible o con secciones troncocónicas conocidas como «trompa de elefante» que ayudan a mezclar nuevamente el hormigón fresco al pasar y evitan su segregación. Estas mangueras, fabricadas en PVC, permiten un vertido preciso, ya que son manejadas manualmente por el operario.

Los equipos de bombeo estacionarios, donde la mayoría son remolcados, poseen mayor potencia y presión máxima que las autobombas. A continuación, se puede ver un cuadro comparativo orientativo.

Tabla 1. Cuadro comparativo de distintos equipos de bombeo

Equipo de bombeo Capacidad máxima (m3/h) Presión de funcionamiento (kPa)
Móvil sobre hormigonera 60 6900
Móvil sobre camión 200 19500
Estacionario 200 24500

Tanto en los equipos móviles como en los estacionarios, la estructura presenta características similares, diferenciándose únicamente en su sistema de soporte. En los equipos móviles, esta estructura está montada sobre un camión, mientras que en los equipos estacionarios se utiliza principalmente una grúa torre o una columna tubular.

La estructura de los equipos, tanto móviles como estacionarios, se compone de tres o más brazos plegables hidráulicamente en el plano vertical, apoyados sobre un castillete cuya base incluye una corona de rodamientos de gran diámetro que permite el giro de la pluma en cualquier dirección mediante un motor hidráulico compensado. La altura de la pluma puede alcanzar hasta 60 m, siendo comúnmente de entre 20 y 35 m. En los equipos móviles, el castillete se ancla al bastidor auxiliar del chasis del camión, mientras que en los equipos estacionarios se emplean principalmente una torre o una columna tubular, esta última equipada con un sistema hidráulico que facilita el ascenso y el movimiento vertical de la pluma. En un artículo anterior se describió con mayor detalle las torres distribuidoras de hormigón (placing boom).

Figura 4. Características de una autobomba.

Os dejo a continuación una explicación al respecto de la UPV que espero que os sea de interés.

Os dejo algunos otros vídeos al respecto.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Planta dosificadora de hormigón: planta de vía seca

Figura 1. Planta dosificadora de hormigón. https://frumecar.com/2021/07/06/plantas-hormigon-via-seca/?lang=es

Las plantas dosificadoras, o plantas de vía seca, no incluyen una mezcladora, por lo que suelen ser menos complejas. La elección de una planta dosificadora puede estar restringida por normativas locales o nacionales, o por los requisitos específicos de obras o proyectos complejos, como grandes infraestructuras, puentes o rascacielos, que requieren un preamasado antes del vertido en la hormigonera. Estos modelos de plantas de hormigón son ideales cuando la distancia entre la planta y el área de aplicación es considerable. En estos casos, los ingredientes del hormigón se pesan y se transfieren directamente al camión hormigonera, sin pasar por un proceso de mezclado en la planta. La capacidad de producción de estas plantas de hormigón tipo seco varía normalmente entre 60 m³/h y 120 m³/h. Además, estas plantas no son adecuadas para la producción de hormigón destinado a la fabricación de piezas prefabricadas.

Figura 2. Planta dosificadora de hormigón. https://www.sami.info/es/productos/plantas-dosificadoras-hormigon/

En algunos países se permiten las llamadas mezclas secas, en las que la central solo realiza la dosificación de los ingredientes sin contar con una mezcladora. En este caso, el amasado se lleva a cabo en los camiones hormigonera durante el transporte. Estas centrales suelen funcionar sin automatización y tienen una capacidad de producción muy elevada.

Las plantas dosificadoras pueden ser fijas o móviles y adaptarse a diferentes niveles de infraestructura. Existen dos tipos principales:

  • Plantas de hormigón verticales: en estas, el acopio de áridos y cemento se realiza en la parte superior y el dosificado se hace por gravedad.
  • Plantas de hormigón horizontales: el acopio de los componentes se realiza a nivel del suelo y el traslado a la hormigonera se hace mediante cintas transportadoras o tornillos sinfín.

Os dejo algunos vídeos explicativos:

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

ACI COMMITTEE 304. Guide for Use of Volumetric-Measuring and Continuous-Mixing concrete Equipment. ACI 304.6R-09.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

FERRARIS, C.F. (2001). Concrete mixing methods and concrete mixers: State of the art. Journal of Research of the National Institute of Standards and Technology, 106(2):391-399.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1998). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mezcladora cónica para fabricación de hormigón

Figura 1. Amasadora cónica. https://www.directindustry.es/prod/kniele/product-212655-2177811.html

Aunque las mezcladoras cónicas tiene alrededor de 100 años de antigüedad, no ha ganado popularidad en el mercado del hormigón a pesar de su ventaja en cuanto a una descarga sencilla. Sin embargo, en las industrias química, farmacéutica y alimentaria, las mezcladoras cónicas son muy comunes. Este tipo de mezcladora cuenta con una cuba de mezclado cónica en la que se colocan uno o dos dispositivos agitadores.

En el caso de las mezcladoras con dos dispositivos (Figura 2), estos pueden operar en direcciones opuestas. Dos agitadores en a contracorriente producen una mezcla homogénea en la cámara de mezcla cónica en el menor tiempo posible. En función de la aplicación, el agitador está compuesto por un tornillo Arquímedes cónico y palas montadas sobre él en forma de tornillo. El segundo agitador rotativo cuenta con brazos mezcladores y palas que raspan la superficie del tanque de mezcla.

Para la producción de Hormigón Ultra-Alto Rendimiento (UHPC) u Hormigón Autocompactante (SCC), la mezcladora puede estar equipada con un agitador especial y un sistema de accionamiento específico. Se pueden alcanzar velocidades de rotación de hasta 350 rpm, lo que permite reducir al mínimo el tiempo de mezcla.

Figura 2. Interior de la amasadora cónica. https://www.kniele.de/en/mixing-systems/kniele-cone-mixer-kkm

El mezclador ofrece múltiples ventajas, entre ellas, la preservación de la calidad de la mezcla al trabajar con pequeñas cantidades y la posibilidad de vaciarlo por completo en el menor tiempo posible. Su diseño cónico permite ahorrar espacio y facilita la limpieza, tanto manual como automática. Destaca por su alta fiabilidad y eficiencia operativa, y permite la producción de una amplia gama de productos mezclados, desde mezclas altamente viscosas hasta secas, y desde extremadamente ligeras hasta extremadamente pesadas. Además, es posible iniciar la operación con el mezclador lleno y cambiar de color o mezclar fibras de manera rápida y eficiente. Es posible arrancar la operación con el mezclador lleno en cualquier momento, cambiar de color en el menor tiempo posible y mezclar fibras sin dificultad. También cuenta con diferentes sistemas de cierre según el producto mezclado.

Os paso un vídeo explicativo del funcionamiento:

Os dejo un artículo donde se utiliza este tipo de mezcladora en una planta de prefabricados.

Descargar (PDF, 2.82MB)

También os dejo un folleto explicativo de la empresa Kniele.

Descargar (PDF, 1.56MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

ACI COMMITTEE 304. Guide for Use of Volumetric-Measuring and Continuous-Mixing concrete Equipment. ACI 304.6R-09.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

FERRARIS, C.F. (2001). Concrete mixing methods and concrete mixers: State of the art. Journal of Research of the National Institute of Standards and Technology, 106(2):391-399.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1998). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mezcladoras de hormigón de marcha continua

Figura 1. Mezcladora continua. https://www.directindustry.es/prod/betonmec-srl/product-246672-2560995.html

En las mezcladoras de marcha continua (continuous mixers), como su nombre indica, los materiales se introducen de forma continua en la mezcladora al mismo ritmo que se descarga el hormigón. La mayoría de los mezcladores continuos utilizan un sinfín que gira en un canal o tubo inclinado. Generalmente, se trata de tambores fijos equipados con palas helicoidales que giran en el centro del tambor. Este tambor está inclinado hacia abajo en dirección a la abertura de descarga. El tiempo de mezclado viene determinado por la inclinación del tambor, que suele ser de unos 15°. Reducir la inclinación del canal puede disminuir el tiempo de mezcla, mientras que aumentarla puede prolongarlo. El tiempo de mezcla se puede ajustar modificando el ángulo de inclinación del mezclador, las revoluciones por minuto del sinfín, la configuración de las hélices, la tasa de producción, o una combinación de estos factores. El tiempo de mezcla real, desde la entrada hasta la salida, suele ser inferior a 20 segundos. Sin embargo, se han conseguido tiempos de hasta 45 segundos, aunque esto implica una considerable reducción en la capacidad de producción.

El funcionamiento de la mezcla continua se basa en el movimiento desde el punto de alimentación hasta el punto de descarga, generado por la rotación del recipiente mezclador, que hace girar los ingredientes o los desplaza en un patrón de zigzag, similar al de una mezcladora de paletas continua. El proceso de carga del material es crucial y puede influir significativamente en la calidad de la mezcla descargada. Durante el trayecto del material a través de la mezcladora, se produce una mezcla axial y radial. El tiempo que tarda el material en desplazarse desde el punto de alimentación hasta la descarga se denomina tiempo de retención de la mezcla. Aunque este tiempo puede controlarse con precisión en las mezcladoras de ciclo discontinuo, en las mezcladoras continuas no es uniforme y puede verse afectado por factores como la tasa de alimentación, la velocidad de la mezcladora y su diseño.

Su uso no es frecuente, ya que se limita a grandes instalaciones fijas debido a la complejidad que supone garantizar la calidad del hormigón obtenido. Su coste es relativamente elevado y requieren una cantidad considerable de espacio para funcionar. Se utilizan para la producción en continuo en los equipos para grava-cemento. Sin embargo, destacan por su alta productividad, puesto que eliminan los tiempos de carga y descarga y optimizan el proceso. Estas mezcladoras suelen emplearse en la producción masiva de hormigón. Son especialmente útiles en aplicaciones que requieren un tiempo de trabajo reducido, un prolongado tiempo de descarga, ubicaciones remotas (no adecuadas para el hormigón premezclado) y entregas de pequeño volumen. Un uso común de estas mezcladoras es la fabricación de hormigones de baja fluidez, como los utilizados en pavimentos. No obstante, debido al breve tiempo de mezclado, el control del contenido de aire resulta difícil, incluso con la incorporación de aditivos aireantes.

Están compuestas por un tubo mezclador ligeramente inclinado, equipado en su interior con un tornillo de Arquímedes. Los materiales se introducen por un extremo del tubo y se descargan por el extremo opuesto después de ser mezclados a fondo durante el trayecto gracias al tornillo sinfín. El tubo permanece fijo y la única pieza motriz es la que acciona el tornillo. La boca de carga se ubica en el extremo superior, mientras que la de descarga se encuentra en el extremo inferior.

Estas mezcladoras llevan dispositivos para tamizar el cemento y evitar su aportación apelmazada, además de con un circuito independiente de agua que permite introducir el cemento en forma de una fina lechada.

Un dispositivo integrado en la máquina realiza la premezcla de los áridos en una rueda elevadora. Posteriormente, los áridos se transfieren a la hormigonera mediante una compuerta neumática, mientras que el cemento se introduce a través de un tubo de goma independiente.

Los mezcladores continuos ofrecen una serie de ventajas, entre las que destacan su alta capacidad en comparación con los mezcladores discontinuos, un tiempo de mezcla más corto y un rendimiento de mezcla constante cuando se cuenta con un sistema de alimentación adecuado. Además, permiten un control automatizado, reducen la segregación de partículas en la mezcla, son más compactos y requieren menos mano de obra.

Sin embargo, también presentan algunas desventajas. No mezclan tan bien cuando se introducen muchos componentes, los costes de mantenimiento son más elevados y requieren una calibración y supervisión cuidadosas. No son adecuados para situaciones en las que las dosificaciones deben ser precisas y ofrecen menos flexibilidad, ya que es necesario recalibrar el sistema para mezclar una nueva dosificación o añadir un nuevo ingrediente.

Os dejo varios vídeos ilustrativos.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

ACI COMMITTEE 304. Guide for Use of Volumetric-Measuring and Continuous-Mixing concrete Equipment. ACI 304.6R-09.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

FERRARIS, C.F. (2001). Concrete mixing methods and concrete mixers: State of the art. Journal of Research of the National Institute of Standards and Technology, 106(2):391-399.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1998). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Torres distribuidoras de hormigón: placing boom

Figura 1. Torre distribuidora de hormigón. https://socomaq.com/?product=placing-boom-truemax

Las torres distribuidoras de hormigón (TDH) o plumas de colocación estacionarias, también conocidas como placing boom, son brazos hidráulicos que complementan las bombas estacionarias, permitiendo una distribución eficiente del hormigón en elementos como losas, pilares o muros de edificios. Estas torres son un recurso clave para agilizar los procesos de hormigonado, ya que permiten distribuir el hormigón de manera independiente, tanto en elementos horizontales como verticales, sin depender de otros recursos esenciales en la obra, como la grúa pluma.

Los modelos más demandados cuentan con brazos de 28 y 32 m de longitud, lo que les permite colocar hormigón en superficies de 2810 y 3215 m², respectivamente, imitando de manera precisa el movimiento de una mano. Estas torres ahorran tiempo y dinero gracias a su fácil y rápida conversión de camión a torre, además de mejorar la seguridad en el trabajo y brindar mayor flexibilidad al contratista.

Entre sus principales ventajas se encuentran la velocidad de cobertura programable y la alta precisión en la colocación del hormigón, lo que reduce la necesidad de limpiar los encofrados y contribuye a prolongar su vida útil.

Estos equipos están formados por una columna que puede ascender a través de la estructura de hormigón armado mediante un sistema hidráulico de izaje autotrepatante. En la parte superior, el brazo articulado contiene una tubería interna que transporta el hormigón bombeado desde el nivel inferior hasta el distribuidor de hormigón.

Esta tecnología, combinada con una bomba de alimentación adecuada ubicada en la base del edificio, se presenta como una solución constructiva altamente eficiente. Permite la colocación de grandes volúmenes de hormigón, respondiendo de manera segura y rentable a las crecientes demandas de estructuras de gran altura, cada vez más complejas e innovadoras.

Figura 2. Placing boom. https://hormigonaldia.ich.cl/maquinarias/torres-de-distribucion-de-hormigon-rapidez-y-eficiencia-en-altura/

Os dejo algunos vídeos al respecto de este tipo de maquinaria de colocación del hormigón. Espero que os sean de interés.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Centrales móviles y transportables de fabricación de hormigón

Figura 1. Planta móvil de fabricación de hormigón Promax M120 TWN. https://www.promaxstar.com/es/promax-m120-twn/

Toda la central puede ser un único conjunto móvil con ruedas, que se ajusta al gálibo de carreteras, o descomponerse en varios módulos independientes, cada uno de ellos también montado sobre ruedas. En ambos casos, el ensamblaje y la puesta en funcionamiento se completan en unas pocas horas (Figura 1). Aunque su capacidad de almacenamiento es inferior a la de las centrales transportables, su coste es mayor. Estos sistemas pueden montarse en un semirremolque que puede transportarse con un camión tractor estándar. Esta característica representa una gran ventaja, ya que elimina la necesidad de transporte especial y reduce el tiempo de carga, descarga y montaje.

Las centrales transportables tienen una capacidad de almacenamiento menor que la de las centrales fijas. Están diseñadas para ser transportadas con facilidad, pues se descomponen en varios módulos o secciones que pueden trasladarse dentro del gálibo de carreteras, ya sea con o sin permiso especial de circulación, y montarse rápidamente en el lugar de la obra.

Los módulos prefabricados contienen los componentes esenciales de la central. Por ejemplo, en la Figura 12 se puede ver un módulo que incluye un conjunto de básculas dosificadoras y las compuertas interiores de las tolvas.

Figura 2. Central de hormigonado transportable

Os dejo algún vídeo ilustrativo:

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Centrales para la venta de hormigón: el hormigón preparado

Figura 1. Central de hormigón preparado. https://www.gerardomartin.com/

En ocasiones, se prefiere adquirir hormigón en una central en lugar de fabricarlo en la obra por varias ventajas económicas y técnicas. En términos económicos, la central de hormigón preparado puede obtener materiales a precios más competitivos gracias a la compra en grandes cantidades, lo que resulta en un coste menor en comparación con el precio que los contratistas tendrían que pagar. Además, es más económico transportar el hormigón ya elaborado que los componentes por separado.

Otra ventaja significativa es la eliminación de la instalación de hormigonado en el lugar de la obra, lo que reduce la necesidad de amortización del equipo, el coste de mantenimiento y el espacio requerido, especialmente en obras con limitaciones de espacio. De este modo, se evita la necesidad de contar con cobertizos para el cemento en sacos o silos para el cemento a granel, así como la instalación de sistemas de agua. Además, se minimizan las pérdidas de materiales, como el cemento, que puede dañarse en sacos o por exceso de dosificación. Se elimina la mano de obra necesaria para la fabricación del hormigón en el lugar y se parte de un precio conocido y preestablecido para el hormigón.

En términos de ventajas técnicas o cualitativas de adquirir hormigón preparado, se destacan la garantía de calidad del producto y la responsabilidad de la central en mantener esos estándares. Asimismo, esto ofrece una mayor comodidad al jefe de obra, quien no necesita supervisar la fabricación del hormigón, lo que simplifica la gestión del proyecto.

Las centrales de venta de hormigón se dividen en dos tipos: centrales con mezcladoras (mixing plant) y centrales de mezcla seca (batching plant). El hormigón se amasa en central y se descarga sobre camión, que se limita a transportarlo. En muchos países, las normas de hormigón requieren que el hormigón vendido se amase previamente en la central.

En algunos países se permiten las llamadas mezclas secas, en las que la central solo realiza la dosificación de los ingredientes sin contar con una mezcladora. Aquí, el amasado se lleva a cabo en los camiones hormigonera durante el transporte. Estas centrales suelen funcionar sin automatización y tienen una capacidad de producción muy elevada.

Según Tiktin (1998), para establecer una central de venta de hormigón deben cumplirse ciertas condiciones. El volumen de trabajo debe ser lo suficientemente grande como para que la central sea rentable y pueda ofrecer precios más competitivos que los del contratista, especialmente en ciudades con al menos 100 000 habitantes. La ubicación de la central es crucial para reducir los costes de transporte de materiales y no deben existir problemas de tráfico. Además, la calidad del hormigón debe ser superior, garantizando regularidad y precisión en la dosificación. La capacidad de producción debe ser adecuada para cumplir con los plazos de entrega establecidos.

Según el artículo 51.2.1 del Código Estructural, «se denominará hormigón preparado a aquel que se fabrica en una central que está inscrita en el Registro Industrial según el Título 4º de la Ley 21/1992, de 16 de julio, de Industria y el Real Decreto 697/1995, de 28 de abril, por el que se aprueba el Reglamento del Registro de Establecimientos Industriales de ámbito estatal, estando dicha inscripción a disposición del peticionario y de las Administraciones competentes, que cumple con las disposiciones físicas y documentales que contempla la legislación industrial vigente y que, con carácter general, no pertenece a las instalaciones propias de la obra”.

Os dejo un vídeo del funcionamiento de una central de mezcla seca (batching plant).

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1998). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Alisadoras rotativas o fratasadoras

Figura 1. Fratasadora mecánica. https://blog.intermaquinas.online/fratasadoras-de-hormigon/

Una fratasadora de hormigón es una máquina que se utiliza para conseguir una superficie lisa, densa y nivelada en un pavimento de hormigón. El fratasado mecánico, a diferencia del manual, ofrece resultados altamente efectivos en soleras que demandan una superficie final de alta calidad. Al girar la estrella con las paletas, se realiza el fratasado del hormigón casi fraguado, expulsa el agua y el aire hacia la superficie, logrando una compactación que sella los poros y cierra la superficie. El resultado es una superficie densa, dura, resistente al desgaste y con una reducción de polvo. Con un acabado tan pulido como el terrazo, estas superficies son ideales para usos industriales. Además, no requieren una capa intermedia para la aplicación de pavimentos plásticos, linóleo o parqué en edificaciones. Este proceso también reduce los costes de mano de obra, ya que una máquina puede fratasar hasta 450 m² de solera en una sola jornada de trabajo.

Una alisadora rotativa o fratasadora está compuesta por un motor que se ubica en el centro de gravedad de las palas o hélices para proporcionar así más estabilidad y equilibrio. Cuentan con un embrague accionado desde el manillar por el operador. Este embrague, conocido como «de hombre muerto», permite detener instantáneamente las paletas sin apagar el motor. Además, la máquina incluye una reductora y un brazo o manillar para su manejo. La fratasadora cuenta con una estructura de tres o cuatro brazos, denominada «estrella», donde se montan las paletas de fratasado. Estas paletas están rodeadas por un anillo de protección fijo, construido en tubo de acero, que permite trabajar cerca de las paredes y previene accidentes. Estas máquinas cuentan con un control de inclinación de las paletas, preferiblemente ubicado en la empuñadura. Se utilizan dos tipos de paletas: unas anchas para la preparación, que eliminan las irregularidades, y otras más estrechas para el acabado o pulido. En algunos casos, en lugar de las paletas de preparación, se emplea un disco de allanar seguido de las paletas de acabado. El diámetro exterior de las paletas varía entre 90 y 112 cm, y su velocidad de giro oscila entre 0,8 y 2,7 Hz.

El alisado se realiza cuando el hormigón está lo suficientemente firme como para que el paso de una persona no deje huellas perceptibles, o mediante la «regla de la mano»: si al presionar la palma de la mano sobre el hormigón este no se adhiere, la superficie está lista para el fratasado. Si se ha utilizado un tratamiento de vacío, el fratasado se realiza de inmediato; de lo contrario, es necesario esperar de 3 a 4 horas después del paso de la regla vibrante.

Primero, se utiliza la máquina con las paletas anchas o de preparación en posición completamente horizontal, lo que permite expulsar el agua y el aire hacia la superficie y sellar los poros. Una vez finalizada esta fase, se deja que la superficie se endurezca nuevamente, y luego se pasa la máquina con las paletas estrechas o de acabado, ajustando su inclinación hasta lograr la superficie plana deseada.

El operario controla la máquina presionando la barra de mando para moverla hacia la derecha, la izquierda, hacia delante o hacia atrás. Si se realiza un refratasado, aproximadamente de 15 a 30 minutos después de terminar, se mejora aún más la resistencia al desgaste. Para aumentar la eficiencia, especialmente en grandes superficies como carreteras o pistas, se ha desarrollado una fratasadora con tres rotores que permite al operario trabajar sentado y alcanzar un rendimiento superior a los 1200 m² por hora con un solo mando. En edificación, este método puede eliminar la necesidad de una capa superior de igualación de mortero cuando se aplican parqués o moquetas.

Figura 2. Fratasadora para grandes superficies. https://www.becosan.com/es/fratasadora-de-hormigon/

Según su sistema de guiado, se pueden distinguir dos tipos de fratasadoras:

  • Fratasadora de hormigón doble: Esta fratasadora, operada por un trabajador sentado, está diseñada para cubrir superficies extensas, como las de naves industriales. Equipada con dos juegos de aspas, uno a cada lado, facilita un fratasado más rápido en proyectos de gran tamaño. Dentro de esta categoría, se pueden distinguir dos tipos:
    • Fratasadoras con aspas solapadas: En estas máquinas, las aspas no se cruzan, sino que se solapan ligeramente, ofreciendo una cobertura eficiente.
    • Fratasadoras con aspas cruzadas: En este modelo, las aspas se cruzan durante el funcionamiento, proporcionando una cobertura más uniforme.
Figura 3. Fratasadora doble. https://www.becosan.com/es/fratasadora-de-hormigon/
  • Fratasadora de hormigón guiada simple: Cuenta con un brazo o mango ajustable que permite al operario adaptar la máquina a la posición más cómoda. Esta fratasadora es ideal para trabajar en áreas pequeñas o cerca de obstáculos como pilares, puertas, paredes, columnas o muros, debido a su ligereza y maniobrabilidad, características que facilitan el acceso a espacios difíciles para las fratasadoras con conductor sentado. Dentro de las fratasadoras guiadas simples, se pueden distinguir dos tipos diferentes.
    • Fratasadoras «Mosquito»: Estas fratasadoras tienen un diámetro de trabajo de entre 60 y 70 cm.
    • Fratasadoras «helicóptero»: Estas fratasadoras cuentan con un diámetro de trabajo que oscila entre 90 cm y 120 cm.
Figura 4. Fratasadora «mosquito» de hormigón. https://www.becosan.com/es/fratasadora-de-hormigon/
Figura 5. Fratasadora de hormigón «helicóptero». https://www.becosan.com/es/fratasadora-de-hormigon/

Además del tamaño de la superficie a tratar, es fundamental tener en cuenta los siguientes aspectos al elegir una fratasadora de hormigón:

  • Diámetro de las palas: La selección del diámetro de las palas depende del trabajo que se va a realizar. Para superficies pequeñas, un diámetro de pala entre 60 y 65 cm suele ser el más adecuado. En superficies grandes, el diámetro óptimo de las palas debe situarse entre los 90 y 95 cm, e incluso puede alcanzar los 120 o 125 cm.
  • Tipo de motor: Se prefieren las fratasadoras eléctricas cuando no es posible utilizar motores de combustión debido a requisitos específicos del entorno o del trabajo. Las de gasolina son más comunes debido a su mayor potencia y a la ventaja de no requerir cables, lo que facilita la tarea. También existen fratasadoras de gas y, en algunos casos, modelos automáticos.
  • Peso: Es un factor clave, especialmente en el caso de las fratasadoras simples. En primer lugar, el peso influye en el traslado de la máquina hasta el lugar de trabajo. Aunque se supone que las fratasadoras dobles son más complicadas de mover, existen diferencias de peso entre distintos modelos. En segundo lugar, el peso afecta a la maniobrabilidad de la máquina. Una fratasadora pesada es más difícil de mover durante el trabajo, lo que puede producir un fratasado menos eficiente. En cambio, una máquina ligera permitirá un manejo más ágil y facilitará la realización del trabajo de manera más rápida y eficaz.
  • Potencia: Una mayor potencia permite realizar trabajos de manera más eficiente y rápida. Por el contrario, si la potencia es insuficiente, la calidad del fratasado se verá comprometida.

El uso de una fratasadora conlleva varios riesgos, entre los cuales se incluyen:

  • Ruido y vibraciones generados por la máquina.
  • Dolores físicos o sobreesfuerzos debidos a la postura del operador.
  • Impactos o golpes involuntarios con partes de la maquinaria.
  • Medidas preventivas al utilizar una fratasadora de hormigón

Para mitigar estos riesgos, es esencial adoptar medidas preventivas, principalmente a través del uso adecuado de equipos de protección individual:

  • Cascos: Para protegerse del ruido excesivo.
  • Calzado con suelas antideslizantes: Para garantizar una buena estabilidad y prevenir resbalones.
  • Gafas de protección: Para proteger los ojos de partículas proyectadas.
  • Guantes: Para prevenir lesiones por contacto con objetos proyectados por las hélices.

Normas de uso y mantenimiento

  • Mantenimiento y limpieza: realice siempre las tareas de mantenimiento o limpieza con la maquinaria apagada.
  • Reparaciones: Si la máquina requiere reparación, contacte con personal autorizado y cualificado.
  • Preparación antes de uso: antes de encender la máquina, asegúrese de limpiar cualquier mancha o derrame de aceite o combustible.
  • Seguridad durante el funcionamiento: no toque las partes del motor mientras esté en funcionamiento.
  • Cables eléctricos: mantenga los cables eléctricos alejados de la zona de trabajo.
  • Uso responsable: nunca deje la máquina encendida sin supervisión.
  • Repostaje de combustible: reposte el combustible únicamente con el motor frío y apagado.
  • Almacenamiento: guarde la maquinaria en áreas alejadas de las zonas de paso y asegúrese de que esté cubierta.
  • Cumplimiento normativo: verifique que las fratasadoras cuenten con el marcado CE y cumplan con el Real Decreto 1215/1997.

Os dejo algunos vídeos:

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón proyectado por vía seca

Figura 1. Hormigón proyectado por vía seca. https://es.scribd.com/document/362308363/Shotcrete

Durante muchos años, se utilizó la técnica de proyección en seco con acelerantes en polvo o líquidos, que ofrecía varias ventajas, pero también generaba una considerable cantidad de polvo. En los últimos años, se ha adoptado el método semihúmedo, en el cual se añade agua a unos 5 m antes de la boquilla de proyección. Este enfoque permite humedecer la mezcla de manera adecuada, lo que reduce el polvo y mejora la homogeneidad del mortero u hormigón proyectado.

Para la fabricación de hormigón proyectado por vía seca, se requiere una instalación que suministre aire y agua a presión, además del equipo de proyección. Estos equipos permiten mezclar en seco los áridos y el cemento, así como añadir agua para el fraguado en la boquilla de salida a través de un anillo perforado.

En el proceso de mezcla seca, se añade el agua necesaria en la boquilla de aplicación, y el material seco de cemento (cenizas, escorias, humo de sílice, etc.) y los áridos se entregan a través de la pistola. El proceso de mezcla húmeda emplea hormigón preparado, con exclusión de los aceleradores necesarios. Los ingredientes se suministran con camiones hormigoneras de hormigón, listos, como se hace con el hormigón normal. La dosificación de cemento oscila entre 300 y 375 kg/m³, con relaciones agua/cemento de alrededor de 0,40 y 0,56, con la limitación del tamaño máximo de árido, que generalmente es inferior a los 10 mm, en función del tamaño de la manguera y la boquilla empleadas.

Figura 2. Esquema gunitado vía seca. https://www.concretonline.com/images/pdf/hormigon/articulos/sika05.pdf

Durante la mezcla en seco, es fundamental controlar que la temperatura del cemento no sea elevada y que no contenga humedad, ya que esto podría provocar fraguados prematuros. Se recomienda utilizar cementos de fraguado rápido, con poca o ninguna adición. Los áridos deben estar limpios y tener una humedad adecuada, generalmente entre el 2 % y el 6 %. En algunos casos, será necesario humedecer los áridos previamente, pero es importante no excederse, ya que un exceso de humedad podría obstruir la boquilla durante la proyección. El tamaño máximo del árido dependerá del equipo de proyección utilizado, especialmente de las mangueras y la boquilla, y generalmente no debe superar los 12 mm, aunque en grandes espesores puede llegar hasta los 20 mm.

Figura 3. Esquema de gunitado por vía semihúmeda. https://www.concretonline.com/images/pdf/hormigon/articulos/sika05.pdf

En el método de proyección en seco, el operario comienza introduciendo solo aire comprimido en la manguera de distribución y, gradualmente, va añadiendo la mezcla en seco a la boquilla. Es fundamental que el operario mantenga un equilibrio adecuado entre el flujo de aire y el material para asegurar una aportación constante e ininterrumpida. Además, se debe regular la cantidad de agua en la boquilla para lograr la humedad adecuada. Al detener la operación, es necesario cortar tanto la alimentación de material como el suministro de agua.

En la técnica de proyección en seco, la habilidad del operario es crucial para asegurar un suministro constante y uniforme de material. Si no se mantiene un equilibrio adecuado entre la cantidad de aire y de agua, pueden producirse interrupciones en la proyección, atascos, variaciones en la velocidad de salida de la boquilla o un exceso de material rebotado. Estas interrupciones pueden provocar una falta o un exceso de agua en la mezcla, lo que requiere un ajuste rápido del suministro de agua por parte del operario. La mala calidad del hormigón resultante de estos problemas puede incluso obligar a retirar el material del paramento.

En el método de proyección en seco, se añade agua en la boquilla para conferir un leve brillo a la superficie final. El operario debe ajustar la cantidad de agua de inmediato según sea necesario. Un exceso de agua puede causar descuelgues y pérdidas de material, especialmente en trabajos en altura, donde se proyecta una gran cantidad de material en un área específica de una sola vez. Por otro lado, una cantidad insuficiente de agua da como resultado una superficie seca, oscura y sin brillo, lo que aumenta el rechazo del material, favorece la formación de bolsas de arena y eleva el riesgo de puntos débiles y estratificación del hormigón. Para un control efectivo del agua, la presión en la boquilla debe estar entre 100 y 200 kPa en comparación con la presión del aire. En el método de proyección en seco, las variaciones en el contenido de agua pueden afectar a la uniformidad de la resistencia del hormigón.

En la proyección por vía seca, la velocidad de aplicación depende de varios factores: el volumen y la presión del suministro de aire, el diámetro y la longitud de la manguera, el tipo de boquilla y las características de los áridos utilizados. Estas variables proporcionan una mayor flexibilidad y versatilidad en las operaciones. Como resultado, el operario puede ajustar con mayor precisión el flujo, la velocidad y el contenido de agua de la mezcla proyectada.

Os dejo algunos vídeos explicativos.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1998). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón proyectado por vía húmeda

Figura 1. Hormigón proyectado por vía húmeda. https://www.probacons.com/concreto-lanzado-de-mezcla-humeda/

El hormigón proyectado por vía húmeda (en inglés, wet spraying) es un tipo de hormigón de granulometría fina que se bombea y se mezcla con aire comprimido. Este aire comprimido impulsa el hormigón a una velocidad de salida aproximada de 12 m/s, lo que facilita su proyección. Las modernas máquinas de proyección de hormigón y los últimos avances en tecnología de aditivos han permitido alcanzar altos rendimientos en la proyección de hormigón por vía húmeda. Estos avances garantizan una formación mínima de polvo, reducen significativamente el rebote y no afectan a las resistencias a compresión requeridas. Sin embargo, en volúmenes pequeños de proyección, el método en vía húmeda puede incrementar el coste de la obra debido al precio de los equipos.

Existen dos sistemas de proyección por vía húmeda: el de flujo diluido (rotor) y el de flujo denso (pistón). En la actualidad, se prefiere el sistema de flujo denso. El sistema de flujo diluido es adecuado para rendimientos de entre 5 y 20 m³/h, mientras que el sistema de flujo denso es más apropiado para rendimientos de 5 a 25 m³/h. En el sistema de flujo denso, la mezcla de hormigón se transporta hidráulicamente mediante bombas de pistones, que utilizan movimientos rápidos de la válvula de salida o un movimiento compensado electrónicamente de los pistones para evitar discontinuidades en el chorro de salida del hormigón durante la proyección.

En la vía húmeda, si el hormigón se suministra desde la planta, es esencial utilizarlo en un plazo de menos de 45 minutos. Si no es posible cumplir con este plazo, se deben emplear retardadores compatibles con los acelerantes utilizados en la boquilla.

Figura 2. Esquema de gunitado por vía húmeda. https://es.scribd.com/document/362308363/Shotcrete

En el método de proyección en húmedo, el hormigón o mortero premezclado, con un asentamiento en cono de entre 4 y 8 cm, se carga en una tolva remezcladora de la máquina de proyección. La mezcla se transfiere luego a la boquilla, donde se le añade aire a presión para aumentar la velocidad de salida y convertirla en un aerosol. El operario regula el flujo de aire, mientras que la mezcladora controla el contenido de agua y la consistencia de la mezcla. Los tiempos de respuesta a las variaciones en los sistemas de control son más largos en comparación con el método en seco, lo que significa que el ajuste de la proyección no es tan instantáneo.

El volumen de aire necesario es relativamente bajo, de alrededor de 10 m³/min, para lograr un rendimiento de aproximadamente 12 m³/h. La incorporación de aire se realiza mediante una boquilla conectada a tres mangueras: una para el hormigón bombeado, otra para el aire comprimido y una tercera para el acelerante.

En el método de proyección en húmedo, las interrupciones en el suministro no afectan al contenido de agua de la mezcla y la dependencia del operario respecto a la bomba es menor. Sin embargo, el operario debe supervisar la humedad de la mezcla en la bomba para garantizar un suministro uniforme.

En el método de proyección en húmedo, el operario no puede ajustar el contenido de agua de la mezcla directamente en la boquilla. El asentamiento en cono de la mezcla debe estar entre 38 y 75 mm: valores inferiores a 38 mm pueden incrementar el rebote, mientras que valores superiores a 75 mm pueden causar descuelgues y desprendimientos.

En la vía húmeda, el contenido de agua de la mezcla viene determinado por el tipo de aplicación y las exigencias de trabajabilidad de la bomba.

Os dejo algunos vídeos explicativos:

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1998). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.