Compactación por resonancia de suelos

La compactación por resonancia de Muller (Muller Resonant Compaction, MRC) constituye un sistema de vibración profunda que se basa en el efecto de resonancia en las capas de suelo para incrementar la eficacia de la densificación (Figura 1). La amplificación de la vibración ocurre cuando la sonda vibrante y el suelo se encuentran en resonancia. En ese momento, la fricción entre las partículas se reduce temporalmente, lo que facilita su reorganización y densificación. El método se utiliza preferentemente en suelos granulares no saturados con un diámetro efectivo de sus partículas D10 (el 10% de las partículas son más finas que ese D10) aproximadamente igual a 0,03 mm. MRC no requiere agua para la penetración.

Figura 1. Compactación por resonancia (Massarsch et al, 2019)

Se utiliza una sonda de acero a la que se adjunta en su extremo superior un vibrador hidráulico de frecuencias de funcionamiento variables. La sonda se introduce en el suelo, ayudado por una guía, a frecuencia alta para reducir la resistencia. Cuando se alcanza la profundidad prevista, la frecuencia se ajusta a la frecuencia de resonancia. La frecuencia de resonancia depende de la masa dinámica y estática del vibrador, de la masa y las propiedades dinámicas de la sonda de compactación y de las condiciones del suelo. En la resonancia, que se produce entre 10 y 20 Hz, la energía de compactación requerida decrece. En esta fase de la compactación del suelo, la presión de aceite del vibrador disminuye, lo que reduce el consumo de combustible y el desgaste en el equipo vibratorio.

La sonda oscila en dirección vertical y la energía de la vibración se transmite al suelo circundante a lo largo de toda la superficie de la sonda. En la resonancia, la capa de suelo vibra “en fase” con la sonda de compactación. En este estado, la energía de vibración se transfiere eficientemente desde el vibrador a la sonda y al suelo circundante, ya que el movimiento relativo entre la sonda de compactación y el suelo es muy pequeño. Este aspecto es una ventaja importante, en comparación con los métodos convencionales de compactación vibratoria.

La sonda de compactación tiene un diseño patentado de placas flexibles en forma de Y con aperturas (FLEXI-probe) (Figura 2). La reducción de la rigidez de la sonda incrementa la transferencia de energía al suelo circundante, lo que se consigue con aperturas circulares en el perfil. Además, estas aperturas también presentan la ventaja de reducir el peso y aumentar la amplitud de la vibración, en comparación con otras sondas vibrantes del mismo peso. La longitud de la sonda así como el tamaño de la abertura puede variar dependiendo de las condiciones del suelo. La frecuencia de resonancia es bastante complicada de predecir desde un punto de vista teórico. Sin embargo, es fácil de medir directamente en el terreno a través de técnicas de medición sísmica.

Figura 2. Perfil longitudinal y sección de una sonda de compactación por resonancia (Massarsch y Fellenius, 2017)

La respuesta dinámica del suelo durante la compactación puede utilizarse para vigilar el efecto de la compactación. Con el aumento de la densificación de las capas, la frecuencia de compactación por resonancia crece. También se incrementa la velocidad de vibración del suelo y se reduce su amortiguación. Con la ayuda de unos sensores de vibración colocados en la superficie del terreno, se puede determinar el cambio en la velocidad de propagación de las ondas, lo que refleja el cambio de la rigidez y el estado tensional del suelo.

La duración de la compactación depende de las propiedades del suelo y del grado de densificación que se desee alcanzar. El tratamiento suele llevarse a cabo en un patrón de cuadrícula, en dos o más pasadas. El espaciado de la cuadrícula oscila entre 3,50 y 4,50 m. Sin embargo, el método MRC puede tener un rendimiento demasiado optimista en lo que respecta a la eficacia en función de los costos. Se requiere una maquinaria pesada capaz de manejar el peso de la sonda y del vibrador, siendo el consumo total de energía es excesivo en comparación con otros métodos. La profundidad de la vibrocompactación se limita en su mayor parte a 30 m.

Referencias:

MASSARCH, K.R., FELLENIUS, B.H. (2019). Evaluation of resonance compaction of sand fills based on cone penetration test. Proceedings of the Institution of Civil Engineers – Ground Improvement, https://doi.org/10.1680/jgrim.17.00004

MASSARCH, K.R., WERSÄLL, C., FELLENIUS, B.H. (2019). Liquefaction induced by deep vibratory compaction. Ground Improvement. Proceedings of the Institution of Civil Engineers – Ground Improvement, https://doi.org/10.1680/jgrim.19.00018

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.