Un nuevo enfoque para mejorar el diseño sostenible de cimentaciones tipo losa

Acaban de publicar nuestro artículo en la revista Environmental Impact Assessment Review (primer cuartil del JCR), en el que se propone un método directo y más riguroso para calcular el módulo de balasto en losas de cimentación, que incorpora un nuevo enfoque de seguridad y criterios de sostenibilidad para mejorar el diseño suelo-estructura.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.

En las últimas décadas, el diseño de cimentaciones ha evolucionado hacia soluciones más seguras, eficientes y sostenibles. Sin embargo, el módulo de balasto vertical (Ks), uno de los parámetros más utilizados en la modelización del contacto suelo-estructura, sigue empleándose en muchos proyectos como si se tratara de una propiedad intrínseca del terreno. El artículo analizado sugiere un cambio de paradigma en esta práctica, al introducir un método directo para estimar Ks a partir de la relación carga-asentamiento, así como un nuevo marco de seguridad orientado al diseño sostenible. Esta aportación es especialmente relevante en el caso de las cimentaciones tipo losa, habituales en edificios y estructuras industriales.

El estudio parte de una cuestión fundamental: ¿cómo se puede estimar de forma rigurosa el módulo de balasto vertical (Ks) en losas de cimentación, considerando parámetros geotécnicos habitualmente ignorados y, al mismo tiempo, integrando criterios de sostenibilidad y seguridad en el diseño?

Esta cuestión surge de las deficiencias detectadas en los métodos indirectos y semidirectos que se emplean comúnmente, ya que no consideran aspectos clave como la profundidad de la influencia o los efectos de compensación de cargas.

Los autores desarrollan una metodología directa que combina varias herramientas avanzadas de análisis geotécnico:

  • Teoría del semiespacio elástico para representar el comportamiento del terreno.

  • Análisis de asientos por capas, con el fin de capturar la variabilidad en profundidad.

  • Mecánica de consolidación basada en ensayos edométricos, que permite incorporar la respuesta deformacional del suelo bajo carga.

  • Consideración explícita de la profundidad de la influencia y de la compensación de cargas, factores que rara vez se incluyen en los métodos tradicionales.

Con este planteamiento, se obtiene directamente un valor de Ks coherente con los principios de la energía elástica y adecuado para modelos avanzados de interacción suelo-estructura. El valor resultante, 5,30 MN/m³, se sitúa entre los límites inferiores y superiores calculados, lo que confirma la consistencia del método.

El estudio no se limita al aspecto puramente geotécnico, sino que también integra una evaluación de la sostenibilidad del ciclo de vida de tres alternativas de losa de hormigón armado. Para ello, combina un proceso jerárquico analítico neutrosófico (NAHP-G) con el método de decisión multicriterio ELECTRE III, considerando dimensiones estructurales, ambientales y socioeconómicas.

Además, se introduce un coeficiente de seguridad específico para Ks, calibrado para considerar la variabilidad espacial del subsuelo y mejorar el diseño en términos de servicio.

Los resultados del trabajo son especialmente significativos:

  • El método directo permite obtener un Ks más representativo del comportamiento real del terreno y de la losa bajo carga.

  • El nuevo coeficiente de seguridad proporciona un diseño más fiable y coherente con la incertidumbre del subsuelo.

  • Se logra una mejora de 2,5 veces en el índice de seguridad social y una reducción del 50 % en los impactos ambientales respecto a metodologías convencionales.

  • El estudio redefine Ks como una variable de diseño, no como una constante del suelo, corrigiendo así décadas de uso inapropiado en la ingeniería geotécnica.

Las conclusiones del artículo tienen un impacto directo en la práctica profesional:

  1. Mejora del diseño de losas: el método permite ajustar mejor los modelos numéricos y evitar tanto el sobredimensionamiento como los fallos por asientos excesivos.

  2. Integración de la sostenibilidad en fases tempranas del proyecto: el marco NAHP-G + ELECTRE IS proporciona una herramienta objetiva para comparar alternativas de cimentación no solo por criterios técnicos, sino también por criterios ambientales y sociales.

  3. Mayor seguridad y fiabilidad: el nuevo coeficiente de seguridad para Ks ayuda a gestionar la incertidumbre y aumenta los márgenes de seguridad de forma cuantificada.

  4. Aplicación en proyectos con elevada heterogeneidad del terreno: el enfoque resulta especialmente útil en suelos con variabilidad marcada, donde los métodos simplificados generan resultados poco fiables.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MORENO-SERRANO, J.F.; NAVARRO, I.J.; YEPES, V. (2026). Innovative safety framework and direct load–settlement method to optimize vertical subgrade modulus in sustainable mat foundations. Environmental Impact Assessment Review, 118, 108191. DOI:10.1016/j.eiar.2025.108191

Os dejo el artículo completo para su descarga, ya que está publicado en abierto.

Pincha aquí para descargar

 

¿Tus cimientos se diseñan con métodos desfasados? 5 revelaciones para proyectar de forma más segura y sostenible

Como profesionales de la ingeniería y la arquitectura, convivimos con una tensión permanente: garantizar la máxima seguridad de las estructuras mientras enfrentamos la presión de optimizar costes y reducir el impacto medioambiental. En el diseño de cimentaciones, esta tensión suele traducirse en incertidumbre y en un sobredimensionamiento conservador. Pero ¿qué sucede cuando uno de los supuestos básicos de nuestros cálculos se aleja de la realidad?

Un ejemplo claro es el módulo de reacción vertical del suelo, conocido como coeficiente de balasto o módulo de Winkler (Ks), un parámetro clave en el diseño de losas de cimentación que a menudo se interpreta incorrectamente y se obtiene de tablas genéricas con poco rigor. Una investigación reciente revela hallazgos significativos que cuestionan estas prácticas habituales y plantean alternativas para obtener cimentaciones más seguras, eficientes en costes y de menor impacto medioambiental.

Este artículo sintetiza una investigación publicada en la revista del primer decil del JCR, Environmental Impact Assessment Review, en la que se presenta una metodología rigurosamente formulada para la estimación directa del módulo (Ks) en cimentaciones por losa, superando las deficiencias clave de los enfoques convencionales. Su principal aportación es un modelo directo que integra la teoría del semiespacio elástico, el análisis de asientos en suelos multicapa y la mecánica de consolidación edométrica, considerando explícitamente la profundidad de influencia y los efectos de la compensación de cargas. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.

El estudio introduce un coeficiente de seguridad específico para Ks, lo que constituye una innovación que aborda la incertidumbre geotécnica y fortalece la fiabilidad del diseño en los estados límite de servicio. Esta metodología se integra en un marco de evaluación del ciclo de vida y decisión multicriterio (MCDM) que utiliza un proceso híbrido de AHP neutrosófico en grupo (NAHP-G) y ELECTRE IS para evaluar alternativas de diseño de cimentaciones según criterios económicos, ambientales y sociales.

Aplicado a un caso de estudio real, el método propuesto (denominado 3-NEW) demuestra ser la solución más sostenible. El diseño resultante (A3) mejora el rendimiento de sostenibilidad global en un 50 % y aumenta el índice de seguridad social en 2,5 veces en comparación con las metodologías de referencia. Este trabajo establece un marco unificado que avanza en la práctica del diseño geotécnico, optimiza el uso de materiales y alinea el diseño de cimentaciones con los principios de resiliencia y de economía circular.

A continuación os dejo algunas ideas clave contenidas en este estudio.

1. El módulo de balasto (Ks) no es una propiedad del suelo, sino una consecuencia de la interacción.

La primera idea consiste en entender que el módulo de balasto (Ks) no es una constante intrínseca del terreno, como el peso específico o la cohesión, que podamos consultar en una tabla. Se trata de un concepto más complejo. Es un parámetro variable que depende de la carga y de la profundidad de su influencia.

Esto significa que el módulo de balasto es el resultado de la interacción entre la cimentación (su tamaño y rigidez) y el terreno bajo una carga específica. Depende de la carga transmitida, de la geometría de la losa y de la profundidad del bulbo de presión generado. Este cambio de perspectiva es crucial, pues nos obliga a abandonar las tablas genéricas y a realizar un cálculo adaptado a las condiciones reales de cada proyecto. Así, reconocemos que el «mismo» suelo se comportará de manera diferente bajo una pequeña zapata que bajo una gran losa de un edificio. Esta idea, conocida en el ámbito geotécnico, no debería pasarse por alto.

 

2. Los métodos tradicionales no explican ni integran la paradoja de la rigidez infinita en cimentaciones totalmente compensadas.

Cuando se proyectan cimentaciones con sótanos, la excavación compensa parte de la carga del edificio al retirar el peso del suelo existente. En estos casos, los métodos convencionales de cálculo de Ks (el 1-BAS, un método empírico, y el 2-REF, un método semidirecto) o no tienen en cuenta la «paradoja del balasto infinito» (1) o no la integran ni la armonizan (2).

Si la carga neta transmitida al terreno es próxima a cero o negativa, la deformación generada por la cimentación tiende a cero, ya que la profundidad de influencia del bulbo de tensiones tiende a cero y, por tanto, el valor del balasto vertical tiende a infinito. Con la propuesta metodológica del trabajo (3-NEW, un método directo), se resuelve esta paradoja al vincular Ks directamente con los asientos elásticos reales y con las cargas transmitidas por la estructura, lo que explica el fenómeno físico y elimina la paradoja en el cálculo mediante un límite mínimo de la profundidad de influencia (el 5 % de la carga bruta transmitida). En escenarios totalmente compensados, el método regula la respuesta mediante umbrales y el factor de seguridad (FS), evitando así resultados físicamente inconsistentes.

3. Estamos olvidando el factor de seguridad donde más importa: en los asientos.

En geotecnia, es habitual aplicar un factor de seguridad (FS) de entre 2,5 y 3,0 frente a la rotura del terreno. Sin embargo, cuando el diseño se basa en el límite de asientos (algo muy común en grandes losas), aplicamos un factor de seguridad de 1,0.

Se debería buscar una mayor coherencia en esta práctica, ya que, como señala la investigación, los límites de servicio (como los asientos) quedan desprotegidos frente a la variabilidad e incertidumbre del subsuelo. En otras palabras, no dejamos margen de seguridad para proteger la estructura frente a la fisuración, las deformaciones excesivas o los daños en los acabados, que son consecuencia directa de los asientos. La investigación propone un factor de seguridad formal para el cálculo de Ks (FS = 1,2 en condiciones estándar), lo que permite armonizar la seguridad en los estados límite últimos y de servicio.

4. El diseño más seguro resultó también el más sostenible en su ciclo de vida.

El estudio comparó tres alternativas de diseño (A1-BAS, A2-REF y A3-NEW) mediante un análisis de sostenibilidad del ciclo de vida. Inicialmente, la alternativa A1 (diseñada con el método tradicional) parecía la más rentable en términos de costes y emisiones de CO₂.

Sin embargo, al introducir el criterio social de seguridad, que cuantifica la fiabilidad estructural y la seguridad para los usuarios y se deriva del nuevo marco de cálculo, la alternativa A1 fue penalizada drásticamente. La ganadora fue la alternativa A3 (diseñada con el nuevo método), no por ser la mejor en un único aspecto, sino por ofrecer el mejor equilibrio global, destacando en el criterio clave de seguridad. De hecho, A3 consiguió una mejora relativa del 50 % en el rendimiento agregado de sostenibilidad. En la práctica, esto se tradujo en un diseño que, en comparación con la alternativa A2, redujo los costes de construcción en un 12,5 % y, en comparación con la alternativa A1, disminuyó los costes de mantenimiento a largo plazo en casi un 24 %, lo que demuestra que la seguridad y la eficiencia económica pueden ir de la mano.

5. Una mayor precisión en el cálculo no implica un sobrecoste, sino un uso más eficiente del suelo.

Un análisis más riguroso de un problema no tiene por qué dar soluciones conservadoras y, por tanto, costosas. Este estudio demuestra lo contrario. Al comparar la presión admisible bruta (Qba) que el terreno puede soportar sin exceder los asientos permitidos, los resultados fueron reveladores:

  • Método convencional (2-REF): Qba = 0,146 MPa.
  • Nuevo método propuesto (3-NEW): Qba = 0,265 MPa.

Este notable aumento no se debe a una alteración del suelo, sino a que el nuevo método modela con mayor precisión la interacción suelo-estructura, considerando la profundidad de influencia (19 metros en este caso) y los asientos elásticos reales, lo que evita el conservadurismo innecesario de los métodos simplificados. Esta mayor eficiencia se traduce directamente en un diseño más optimizado y competitivo. Esta optimización no solo reduce costes, sino que también minimiza el consumo de hormigón y acero, lo que la convierte en un pilar fundamental de la construcción sostenible.

Conclusión

Hemos visto que el módulo de balasto no es una propiedad intrínseca del suelo, sino una interacción dinámica; que los métodos tradicionales caen en paradojas; que, en algunos casos, pueden comprometer la seguridad donde más importa; y que, al corregir estos errores, el diseño más seguro también se revela como el más sostenible y eficiente. Al abandonar las simplificaciones anticuadas o demasiado conservadoras y adoptar modelos que reflejen la realidad de la interacción suelo-estructura, no solo podremos construir con mayor confianza, sino también de manera más inteligente y responsable con nuestros recursos.

Así pues, nos surge una pregunta final: si los cimientos de nuestros edificios se basan en principios desactualizados, ¿qué otras suposiciones fundamentales de la ingeniería debemos reexaminar para construir un futuro más resiliente?

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MORENO-SERRANO, J.F.; NAVARRO, I.J.; YEPES, V. (2026). Innovative safety framework and direct load–settlement method to optimize vertical subgrade modulus in sustainable mat foundations. Environmental Impact Assessment Review, 118, 108191. DOI:10.1016/j.eiar.2025.108191

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre cimentaciones superficiales

¿Qué son las cimentaciones superficiales y por qué son las más utilizadas en edificación?

Las cimentaciones superficiales son elementos estructurales que transmiten los esfuerzos (verticales, horizontales y momentos) de una estructura al terreno a través de su base de contacto. Son las más utilizadas en edificación debido a que son más baratas por carga soportada y más fáciles de ejecutar que otros tipos de cimentaciones. Es fundamental no exceder la capacidad portante del terreno y que las deformaciones producidas sean admisibles para la estructura.

Figura 1. Zapata aislada centrada. Imagen cortesía de CYPE, Biblioteca de detalles constructivos

¿Cómo influye la presencia de agua y las características del suelo en la construcción de cimentaciones superficiales?

La presencia de agua es un factor crítico en la construcción de cimentaciones. Un drenaje puede incrementar significativamente los costes y los plazos, e incluso hacer inviable una cimentación superficial. Sin embargo, el nivel freático no afectará a la capacidad portante del terreno si se encuentra a una profundidad superior a 1,5 veces el ancho de la zapata por debajo de la superficie del cimiento. En cuanto al suelo, ciertos tipos pueden alterar su estructura. Por ejemplo, en limos o arenas finas, un bombeo inadecuado puede causar sifonamiento o descenso de la superficie del terreno y afectar a las estructuras cercanas. En suelos arcillosos, el contacto con agua de lluvia o la compactación por pisadas puede ablandarlos, por lo que es necesario verter el hormigón de limpieza sin demora o excavar los últimos centímetros justo antes del hormigonado.

¿Cuáles son los tipos principales de zapatas aisladas y cómo se clasifican estructuralmente?

Las zapatas aisladas son cimentaciones puntuales diseñadas para soportar elementos individuales, como pilares o muros. Se emplean en terrenos firmes y competentes, transmiten tensiones medias a altas y generan pequeños asentamientos. Son la opción más económica en roca o suelos con tensiones admisibles superiores a 0,15 N/mm². Se clasifican según su forma:

  • Rectas: De canto constante.
  • Escalonadas: Con variaciones en el canto.
  • Piramidales: Con canto variable. A veces no necesitan encofrado si el ángulo es menor de 30°, pero dificultan el vibrado.
  • Nervadas o aligeradas: Con nervios para reducir material. El Código Estructural las clasifica como rígidas o flexibles, independientemente de la rigidez del terreno. Una zapata se considera rígida si su canto (h) en el encuentro con el pilar es mayor o igual a un coeficiente (α) multiplicado por su vuelo (v), donde α depende de los módulos de elasticidad del terreno y de la zapata. Las zapatas flexibles suelen ser más económicas por requerir menor volumen de hormigón y acero.
Figura 2. Tipología de zapatas atendiendo a su forma

¿Qué problemas pueden surgir con las zapatas de medianería y de esquina, y cómo se resuelven?

Las zapatas de medianería y de esquina se utilizan cuando los pilares se ubican cerca de los límites de la propiedad. El problema principal de estas zapatas es la excentricidad de la carga, que puede provocar un momento de vuelco y levantar la cimentación. Para contrarrestar este efecto, se pueden emplear varias soluciones:

  • Atar la cimentación al forjado o a la viga superior.
  • Utilizar un tirante que conecte la zapata con otro elemento estructural.
  • Implementar una viga centradora que una las zapatas de medianería o de esquina para redistribuir las cargas y presiones sobre el terreno de manera más uniforme.

¿Cuáles son las fases de ejecución de una zapata aislada?

La construcción de una zapata aislada sigue una serie de fases secuenciales:

  1. Limpieza y desbroce del solar.
  2. Comprobación de medidas y niveles.
  3. Replanteo del movimiento de tierras.
  4. Excavación hasta la cota superior del cimiento y luego la excavación de las zapatas y riostras.
  5. Vaciado de hormigón de limpieza (aproximadamente 10 cm).
  6. Encofrado de zapatas y riostras.
  7. Colocación de la armadura inferior con separadores.
  8. Disposición de la armadura de espera de pilares («enanos»).
  9. Armado de las riostras.
  10. Vertido, vibrado y curado del hormigón. Durante este proceso, se deben cumplir disposiciones como mantener la excavación por debajo de la rasante (0,5 a 0,8 m), evitar la caída libre del hormigón, y no circular sobre el hormigón fresco.

¿Qué son las zapatas combinadas, continuas bajo pilares y continuas bajo muro, y cuándo se utilizan?

  • Zapata combinada: Apoya dos o más columnas cuando las cargas no son excesivas. Se usa si las zapatas aisladas estarían muy cerca (complicando la excavación) o si se buscan asentamientos uniformes, actuando de forma rígida. Se busca que el centro de gravedad de la superficie coincida con el de las acciones.
  • Zapata continua bajo pilares (vigas de cimentación): Son zapatas corridas que soportan tres o más pilares. Tienen una gran longitud en comparación con su sección transversal. Son menos susceptibles a asentamientos diferenciales o vacíos en el terreno que las zapatas aisladas.
  • Zapata continua bajo muro (zapata corrida bajo muro): Caracterizadas por una gran longitud en relación con otras dimensiones, se utilizan como base para muros portantes o cimentación de elementos lineales. Su objetivo es lograr homogeneidad en los asentamientos y reducir las tensiones en el terreno en comparación con las zapatas aisladas, además de ofrecer mayor facilidad constructiva.

¿Cuál es la función de las riostras en las cimentaciones y cómo influye la sismicidad en su disposición?

Las riostras son vigas de hormigón armado que conectan las zapatas. Su función principal es evitar los movimientos relativos entre las zapatas (corrimientos) y absorber cargas horizontales, por lo que son fundamentales para la resistencia a los sismos. Es necesario realizar un atado perimetral de las zapatas. La densidad y la disposición de estas vigas de atado dependen directamente de la aceleración sísmica esperada en la zona.

  • Si la aceleración sísmica está entre 0,06 g y 0,16 g, el atado puede ser unidireccional.
  • Si la aceleración sísmica es igual o superior a 0,16 g, se requiere un atado bidireccional, lo que indica una mayor densidad de riostras para lograr una mayor estabilidad.

¿Cuándo se utilizan los emparrillados y las losas de cimentación, y cuáles son sus ventajas y consideraciones clave?

  • Los emparrillados de cimentación recogen múltiples pilares en una única cimentación formada por zapatas corridas que se entrecruzan en una malla (generalmente ortogonal), lo que proporciona gran rigidez. Se utilizan cuando la presión admisible del terreno es baja, hay una elevada deformabilidad o se esperan importantes asentamientos diferenciales. Son menos sensibles a las heterogeneidades o defectos locales del terreno.
  • Las losas de cimentación (o placas de cimentación) se usan cuando la superficie de las zapatas individuales superaría el 50 % de la superficie del edificio. Son ideales para sótanos estancos por debajo del nivel freático y para reducir los asentamientos diferenciales. Son útiles en terrenos con escasa capacidad portante y en construcciones con poca superficie en relación con su volumen (por ejemplo, rascacielos o silos). Aunque pueden triplicar el coste de las zapatas, ofrecen ventajas como una mayor rigidez y la posibilidad de realizar cimentaciones «compensadas», en las que el peso de la tierra excavada equilibra el peso del edificio y se reducen los asentamientos. Las losas postesadas ofrecen rapidez, menor excavación, mayor capacidad de carga y durabilidad. Una consideración importante es el riesgo de levantamiento del fondo de la excavación en losas grandes, por lo que se requieren pantallas laterales con suficiente empotramiento.
Figura 3. Algunos tipos de cimentaciones superficiales. Imagen elaborada a partir de: http://www.generadordeprecios.info/

 

 

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Losas de cimentación

Figura 1. Tipos de losa de cimentación, según CTE DB SE-C. Fuente: http://noticias.juridicas.com/base_datos/Admin/rd314-2006.nor7.html

Las losas o placas de cimentación se caracterizan por tener una dimensión en planta mucho mayor que el canto. Se utilizan cuando la superficie de las zapatas supera el 50 % de la superficie de la planta. Se aconsejan en sótanos estancos cuya cota inferior se sitúe por debajo del nivel freático, así como para reducir los asientos diferenciales. También son útiles cuando la capacidad portante del terreno es escasa y en construcciones donde la superficie es pequeña en relación con el volumen, como rascacielos, depósitos o silos. En la Figura 1 se muestran distintos tipos de losas de cimentación. En la Figura 2 se muestra cómo se integra la losa de cimentación con el soporte de la grúa que va a trabajar en la construcción del edificio.

Figura 2. Detalle del armado de una losa de cimentación. Imagen: E. Valiente

Como se puede observar en la Figura 3, es necesario utilizar varias bombas de hormigón cuando se quiere hormigonar una losa de grandes dimensiones. A este respecto, es fundamental prever una logística adecuada y equipos de reposición para garantizar el vertido continuo y minimizar el número de juntas de trabajo.

Figura 3. Hormigonado de una losa de cimentación. Fuente: edificio7000.obrasonline.com

Un caso interesante es la losa de cimentación postesada. La rigidez de este tipo de losas permite una construcción rápida y segura, por lo que se recomienda su uso en superficies planas sin suelo expansivo. Entre sus ventajas destacan la rapidez en la ejecución de los cimientos, el menor volumen de excavación, una mayor capacidad de carga y una mayor durabilidad que la losa sólida convencional. Los cables postensados colocados en ambas direcciones de la losa crean una cimentación extremadamente rígida y la habilitan para resistir las fuerzas de flexión.

Os paso a continuación un vídeo del blog de Enrique Alario donde se describe en detalle y se comenta un hormigonado masivo de una losa de cimentación.

Pincha aquí para descargar

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Criterios básicos de elección del tipo de cimentación

Figura 1. Colocación de armadura en zapata. Imagen: V. Yepes

El tipo de cimentación se selecciona en función el tipo de terreno, del tipo de estructura y de la interacción con los edificios próximos. El terreno influye por su capacidad portante, por su deformabilidad, por la existencia de nivel freático, por su excavabilidad o alterabilidad, entre otros. En el tipo de estructura son determinantes las cargas, las tolerancias a los asientos y la presencia de sótanos. Son muy susceptibles aquellos edificios cercanos antiguos con cimentación somera o cuando las cargas van a ser muy diferentes entre los edificios próximos.

La cimentación por zapatas constituye la solución tradicional por economía y facilidad de ejecución. Es una buena solución cuando la resistencia del terreno es de media a alta, sin estratos blandos interpuestos. Es la cimentación ideal si el terreno presenta una cohesión suficiente para mantener verticales las excavaciones, no existe afluencia de agua y el nivel de apoyo se encuentra a menos de 1,5 m, si bien se puede rellenar la diferencia con un hormigón pobre en el caso de mayores profundidades. En edificios ligeros y muros de carga se utilizaban zapatas de hormigón en masa, si bien hoy día se realizan con hormigón armado. Cada pilar asienta de forma independiente sobre cada zapata. Como inconveniente cabe citar la escasa resistencia a giros y a desplazamientos horizontales, que pueden resolverse con riostras, zapatas combinadas o vigas de cimentación.

Figura 2. Desencofrado de zapata. Imagen: I. Serrano (www.desdeelmurete.com)

La cimentación por losa se utiliza en terrenos menos resistentes o heterogéneos, especialmente para tensiones admisibles menores a 0,15 N/mm2. Es económica si la superficie de la cimentación supera la mitad de la extensión que ocupa el edificio. Una ventaja adicional es que anula o reduce los asientos diferenciales. Asimismo se aconseja cuando el edificio presenta un sótano bajo el nivel freático, combinado con muros pantalla. La facilidad constructiva sugiere losas de canto constante, salvo en edificios con zonas cargadas de forma diferente para garantizar la compatibilidad de las deformaciones.

Figura 3. Hormigonado de una losa de cimentación. Fuente: edificio7000.obrasonline.com

Se recurre a la cimentación por pilotaje cuando no existe firme a una profundidad alcanzable mediante zapatas o pozos, normalmente más de 5 m. Los pilotes reducen los asientos de la estructura, cuando la permeabilidad u otras condiciones del terreno impiden la ejecución de cimentaciones superficiales, existen cargas muy fuertes o concentradas o bien se pretende evitar la influencia sobre cimentaciones adyacentes.

Figura 4. Sistema Omega de ejecución de pilotes. Imagen: W. Van Impe (http://scon.persianblog.ir/post/121/)

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Concepto y clasificación de las cimentaciones

Figura 1. Cargas sobre un cimiento superficial (Yepes, 2016)

La cimentación de una estructura es aquello que la sustenta sobre el terreno. Generalmente, está enterrada y transmite al terreno su propio peso y las cargas recibidas, de modo que la estructura que soporta sea estable, la presión transmitida sea menor a la admisible y los asientos se encuentren limitados (ver Figura 1). La cimentación consta de dos partes, el elemento estructural encargado de transmitir las cargas al terreno, o cimiento, y la zona del terreno afectada por dichas cargas, o terreno de cimentación. La cimentación debe resistir las cargas y sujeta la estructura frente a acciones horizontales como el viento y el sismo, conservando su integridad. La interacción entre el suelo y la estructura depende de la naturaleza del propio suelo, de la forma y tamaño de la cimentación y de la flexibilidad de la estructura.

Por cierto, el material de este artículo forma parte del curso que puedes seguir en línea, en el siguiente enlace: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-construccion-de-cimentaciones-y-estructuras-de-contencion-en-obra-civil-y-edificacion/

Las cimentaciones se diseñan para no alcanzar los estados límites últimos o de servicio. Los primeros llevan a la situación de ruina (estabilidad global, hundimiento, deslizamiento, vuelco o rotura del elemento estructural), mientras que los segundos limitan su capacidad funcional, estética, etc. (por ejemplo, movimientos excesivos). Se denomina capacidad portante a la máxima presión que transmite una cimentación sin alcanzar el estado último, mientras la presión admisible es aquella que no se alcanza en ningún estado límite, ya sea último o de servicio, presentando un coeficiente de seguridad respecto a la capacidad portante.

Otros problemas a considerar son la estabilidad de la excavación, los problemas de ataques químicos al hormigón, la posibilidad de heladas, el crecimiento de vegetación que deteriore la cimentación, los agrietamientos y levantamientos asociados a las arcillas expansivas, la disolución cárstica, la socavación, los movimientos del nivel freático, los daños producidos a construcciones existentes (Figura 2) o futuras, las vibraciones de maquinaria o los efectos sísmicos sobre el terreno, especialmente cuando existe posibilidad de licuación.

Los procedimientos constructivos influyen notablemente en el comportamiento de una cimentación. Hay que tener en cuenta que la construcción de la cimentación altera el terreno circundante, lo cual puede modificar algunas de las hipótesis de cálculo. A modo de ejemplo, los pilotes perforados descomprimen el terreno influyendo en la resistencia por fuste. La hinca de pilotes en limos y arenas sueltas saturadas aumenta la presión intersticial, lo que disminuye temporalmente la capacidad del pilote e incluso causar la licuación del terreno.

Figura 2. Descalce de una cimentación vecina durante la excavación. Imagen: E. Valiente

La cimentación puede clasificarse atendiendo a la profundidad a la que se realiza (ver Figura 3). Así, si llamamos D a la profundidad a la que se encuentra el contacto entre la cimentación y el terreno y B la dimensión menor de la cimentación, estas se pueden clasificar en:

  • Cimentación superficial o directa:

D/B < 4

D < 3 m

  • Cimentación semiprofunda o pozos:

4 ≤ D/B ≤ 8

3 m ≤ D ≤ 6 m

  • Cimentación profunda o pilotaje:

D/B > 8

D > 6 m

Figura 3. Clasificación de las cimentaciones en función de la profundidad de apoyo (Yepes, 2016)

Existen distintos tipos de cimentaciones superficiales, tal y como se aprecia en la Figura 4.

Figura 4. Algunos tipos de cimentaciones superficiales. Imagen elaborada a partir de: http://www.generadordeprecios.info/

En la Tabla 1 se ha asignado a cada cimiento directo el tipo de elemento estructural al que sirve de cimentación.

Os dejo a continuación un vídeo explicativo donde se recoge todo lo anteriormente expuesto. Espero que os sea útil.

También podéis ver este vídeo de José Ramón Ruíz, de la UPV:

Os dejo también una presentación de Marcelo Pardo al respecto:

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.