Optimización del mantenimiento del pavimento en carreteras mediante GRASP

La insuficiente inversión en el sector público junto con programas ineficaces de infraestructura de mantenimiento conducen a altos costos económicos a largo plazo. Por lo tanto, los responsables de la infraestructura necesitan herramientas prácticas para maximizar la eficacia a largo plazo de los programas de mantenimiento. En el artículo que os presento se describe una herramienta de optimización basada en un procedimiento híbrido de búsqueda aleatoria y adaptativa (GRASP) considerando la aceptación del umbral (TA) con restricciones relajadas. Esta herramienta facilita el diseño de programas de mantenimiento óptimos sujetos a restricciones presupuestarias y técnicas, explorando el efecto de diferentes escenarios presupuestarios en el estado general de la red. La herramienta de optimización se aplica a un estudio de caso, demostrando su eficiencia para analizar datos reales. Se demuestra que los programas de mantenimiento optimizado rinden un 40% más a largo plazo que los programas tradicionales basados en una estrategia reactiva. Para ampliar los resultados obtenidos en este estudio de caso, también se optimizaron un conjunto de escenarios simulados, basados en el rango de valores encontrados en el ejemplo real. El trabajo concluye que este algoritmo de optimización mejora la asignación de los fondos de mantenimiento con respecto a la obtenida con una estrategia reactiva tradicional. El análisis de sensibilidad de una gama de escenarios presupuestarios indica que el nivel de financiación en los primeros años es un factor impulsor a largo plazo de los programas de mantenimiento óptimo.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Os dejo a continuación la versión autor del artículo.

Descargar (PDF, 568KB)