¿Quieres más datos? No siempre es mejor: la lección que cambiará tu forma de ver la ciencia.

En la era del Big Data, tenemos, casi instintivamente, la idea de que más información siempre es mejor. Acumular más datos parece el camino directo hacia decisiones más inteligentes, resultados más fiables y una certeza casi absoluta. Creemos que si medimos algo diez, cien o mil veces, nuestra comprensión del fenómeno será inevitablemente más profunda y precisa.

Sin embargo, en el ámbito de la experimentación científica rigurosa, esta intuición puede resultar peligrosamente engañosa. Existe un concepto fundamental que a menudo se pasa por alto y que es mucho más importante que la mera cantidad de mediciones. No se trata de cuántos datos se recogen, sino de cómo se recogen. La estructura de un experimento es clave para su eficacia.

En este artículo se desglosan tres ideas clave del diseño experimental que revelan por qué la arquitectura de un estudio es más relevante que la cantidad de datos brutos. Prepárate para descubrir el secreto del éxito en los experimentos.

1. ¿Quién es nuestro protagonista? La unidad experimental.

Todo experimento comparativo tiene una estrella principal, un elemento central en torno al cual gira toda la acción. No se trata del tratamiento aplicado ni de la variable medida, sino de la unidad experimental (UE). Pero, ¿qué es exactamente?

Una unidad experimental es el elemento más pequeño al que se puede asignar un tratamiento de forma completamente independiente. Es la pieza fundamental sobre la que se realizan las mediciones para determinar qué ocurre. Piensa en ella como el «sujeto» de tu experimento.

Los ejemplos concretos ayudan a entenderlo mejor:

  • En la agricultura, si quieres comparar dos tipos de fertilizantes, la unidad experimental podría ser una parcela de terreno de un tamaño determinado.
  • En un estudio médico, la unidad experimental suele ser un paciente.
  • En entomología, podría tratarse de un insecto concreto o incluso de una colonia entera.

La clave está en que la definición de la unidad experimental depende de los objetivos de la investigación. Se trata de la pieza fundamental sobre la que se construye toda la comparación. Definir esta unidad es el primer paso, pero el verdadero desafío surge cuando empezamos a tomar mediciones en ella, lo que nos lleva a una de las trampas más comunes de la ciencia.

2. El espejismo de los «diez datos»: por qué medir más no siempre es medir mejor.

Esta es una de las confusiones más frecuentes. A menudo, en una unidad experimental podemos tomar varias mediciones. A estos subelementos los llamamos «unidades muestrales». Por ejemplo, en una parcela de terreno (la UE) podríamos analizar diez plantas distintas (las unidades muestrales).

Parecería que tenemos diez datos, ¿verdad? Técnicamente, sí, pero no son lo que parecen. Hay una regla de oro en el diseño experimental que lo cambia todo:

Las unidades muestrales dentro de una misma unidad experimental deben recibir el mismo tratamiento. Por ello, la asignación del tratamiento a estas unidades muestrales no es independiente entre sí.

Esto tiene unas implicaciones enormes. Las diez plantas de la misma parcela son como hermanos que crecieron en la misma casa. Comparten el mismo terreno, la misma cantidad de luz solar y la misma cantidad de agua. Medirlas por separado no es lo mismo que entrevistar a diez personas de distintas partes de la ciudad. Su similitud y su falta de independencia significan que no se obtienen diez puntos de vista únicos, sino diez variaciones sobre el mismo punto de vista. Confundir estas muestras con diez unidades experimentales independientes es uno de los errores más frecuentes al interpretar resultados.

Entonces, si multiplicar las muestras en una misma parcela no aumenta la fiabilidad, ¿cómo podemos estar seguros de que nuestro tratamiento funciona? La respuesta no consiste en acumular más mediciones, sino en comprender y medir correctamente el «ruido» del sistema.

3. Abraza el ruido: por qué el «error experimental» es tu mejor aliado.

La palabra «error» tiene una connotación negativa, pero en la ciencia el error experimental es tu mejor aliado. No se refiere a una equivocación ni a un fallo de medición. Se trata simplemente de la variabilidad natural entre las unidades experimentales. Es el «ruido» de fondo inevitable del sistema que estás estudiando. Dos pacientes nunca son idénticos ni dos parcelas de terreno son clones perfectos.

Para medir este «ruido» natural, necesitamos comparar manzanas con manzanas. Por eso la unidad experimental (Idea 1) es tan importante. La pequeña variación entre diez plantas de la misma parcela (las unidades muestrales de la idea 2) no nos dice nada sobre la variabilidad natural entre parcelas. El verdadero error experimental solo puede medirse comparando las diferencias entre múltiples parcelas completas que recibieron el mismo tratamiento.

La diferencia de altura entre dos plantas situadas a pocos centímetros entre sí en la misma parcela bien fertilizada será mínima. Esta pequeña variación no nos dice nada sobre la eficacia del fertilizante en general, especialmente si lo comparamos con otra parcela que, por su composición natural, presenta un suelo completamente diferente. La variación entre las parcelas es lo que constituye el verdadero desafío. La esencia de un buen experimento consiste en determinar si el efecto del tratamiento es mayor que la variabilidad natural. Sin una medición honesta de este error, es imposible sacar conclusiones válidas.

Conclusión: mirar más allá de los números.

La validez de un experimento no depende de la cantidad de mediciones, sino de la correcta definición, asignación y comparación de sus unidades experimentales. Es la estructura, no el volumen, lo que permite separar la señal del ruido.

La próxima vez que leas sobre un nuevo estudio, ignora por un momento el deslumbrante número de mediciones. En su lugar, busca a la verdadera protagonista: la unidad experimental. Pregúntate cómo la definieron los investigadores y cómo la utilizaron para medir el ruido de fondo. Esa es la diferencia entre una montaña de datos y un verdadero descubrimiento.

En esta conversación puedes descubrir alguna de las ideas de este artículo.

También puedes ver este vídeo, donde se recogen los conceptos más interesantes del tema.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Población y muestra, parámetros y estadísticos

Figura 1. Población y muestra. https://proyectodescartes.org/iCartesiLibri/

En cualquier investigación estadística, se recopila información de un conjunto de elementos específicos. Una población se define como un conjunto completo de posibles individuos, especímenes, objetos o medidas de interés que se someten a un estudio para ampliar nuestro conocimiento sobre ellos. En el caso de poblaciones finitas y de tamaño reducido, es factible medir a todos los individuos para obtener un conocimiento preciso de sus características, también conocidas como parámetros. Por ejemplo, se podría analizar la proporción de productos defectuosos o calcular la media de alguna variable relacionada con los productos.

Por otro lado, cuando la población es infinita o muy numerosa, resulta impracticable o costoso medir a todos los individuos. En tales circunstancias, es necesario extraer una muestra representativa de la población y, basándonos en las características observadas en dicha muestra (conocidas como estadísticos), podemos realizar inferencias sobre los parámetros que describen a la población en su totalidad. De manera figurativa, podríamos comparar una muestra, que se supone representativa de una población, con lo que una maqueta representa respecto al edificio que retrata. La calidad de la muestra, al igual que la de la maqueta, dependerá del grado de representatividad que pueda ofrecer.

Figura 2. Parámetros y estadísticos.

En términos generales, la inferencia estadística es el proceso de utilizar estadísticos de una muestra para hacer deducciones acerca de la distribución de probabilidad de una población. Si estas deducciones se efectúan sobre parámetros poblacionales, este proceso se denomina inferencia estadística paramétrica. Si las deducciones se hacen sobre la distribución de probabilidad completa, sin hacer referencia a parámetros específicos, se le llama inferencia estadística no paramétrica.

Dentro del ámbito industrial, las poblaciones de interés abarcan una amplia gama de elementos, que incluyen materiales, productos terminados, partes o componentes, así como procesos, entre otros. En muchas ocasiones, estas poblaciones se caracterizan por ser infinitas o de gran magnitud. Por ejemplo, en la elaboración del hormigón en una planta, resulta inviable, o al menos poco práctico, medir la resistencia a la compresión simple de cada una de las muestras que podrían obtenerse en una amasada. Incluso en situaciones donde la producción no sea masiva, es recomendable pensar en el proceso como si fuera una población infinita o de gran escala, dado que la producción puede continuar sin interrupciones, es decir, no existe un último artículo mientras la empresa siga en funcionamiento. Un ejemplo sería la fabricación de bloques de hormigón en una empresa de prefabricados. En tales circunstancias, los procesos se evalúan mediante muestras de productos extraídas en algún punto específico del proceso.

Un punto crucial a considerar es la obtención de muestras que sean verdaderamente representativas, es decir, que capturen de manera adecuada los aspectos clave que se desean analizar en la población. Para lograr esta representatividad, resulta esencial diseñar un proceso de muestreo aleatorio de manera apropiada. En este tipo de muestreo, se evita cualquier tipo de sesgo que pudiera favorecer la inclusión de elementos particulares, asegurando que todos los elementos de la población tengan las mismas oportunidades de formar parte de la muestra.

Existen varias técnicas de muestreo aleatorio, como el muestreo simple, el muestreo estratificado, el muestreo sistemático y el muestreo por conglomerados. Cada una de estas metodologías se adapta a los objetivos específicos del estudio, así como a las circunstancias y características particulares de la población, garantizando de esta manera que las muestras obtenidas sean verdaderamente representativas.

No obstante, en la práctica, la hipótesis de un muestreo aleatorio suele quedar lejos de cumplirse al lidiar con datos del mundo real. Un ejemplo ilustrativo son los registros de la temperatura diaria. En estos registros, los días calurosos tienden a agruparse, lo que significa que los valores elevados tienden a seguir a otros valores elevados. A este fenómeno se le denomina autocorrelación, y por ende, estos datos no pueden considerarse como el resultado de extracciones aleatorias. La validez de la hipótesis de muestreo aleatorio desempeña un papel fundamental tanto en el análisis como en el diseño de experimentos científicos o en el ámbito del control de la calidad.

La importancia de la aleatoriedad se destaca de manera clara en situaciones cotidianas. Por ejemplo, al seleccionar una muestra de ladrillos de un palet, si optamos por los que se encuentran en la parte superior, podríamos introducir un sesgo en nuestros resultados. Es lamentable que en muchos trabajos estadísticos, la hipótesis de muestreo aleatorio se trate como si fuera una característica inherente de los datos naturales. En realidad, cuando trabajamos con datos reales, la aleatoriedad no es una propiedad en la que podamos confiar de manera absoluta. Sin embargo, con las precauciones adecuadas en el diseño experimental o en la toma de muestras de un control estadístico de la calidad, esta suposición puede seguir siendo relevante y útil.

Os dejo a continuación un vídeo explicativo, que espero os sea de interés.

[media]dff702a0-f6a7-11ea-9fbd-f90680954ff3:640:360[/media]

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.