Evolución de las perforadoras con martillo en cabeza

Perforadora con martillo en cabeza. https://psvperforacion.com/productos-bburg/

La perforación con martillo en cabeza es un sistema clásico que ha utilizado el accionamiento neumático. De este tipo de perforadora ya hemos hablado en un artículo anterior. Sin embargo, hoy en día está siendo desplazado por los martillos en fondo y equipos rotativos. De hecho, desde la aparición de los martillos hidráulicos en la década de los 70, este sistema ha visto resurgir su utilidad y campo de aplicación.

¿Cuál es la razón por este cambio de tendencia? La justificación es muy sencilla. Basta emplear las ecuaciones básicas de la energía y la potencia desarrollada por el pistón de este tipo de perforadoras. En efecto, la energía cinética que alcanza el pistón es proporcional a la presión de aire, a la superficie del pistón y a la longitud de carrera. Para calcular la potencia bastará calcular el número de impactos (energía cedida) en la unidad de tiempo (impactos por minuto).

Por tanto, ante dos perforadoras de la misma potencia, una produciendo pocos impactos por minuto (n), pero de gran energía, y otra con un elevado número de impactos por minuto (N), pero de pequeña energía, tendremos que la primera perforadora romperá más roca a cada golpe, pero la barrena sufrirá mucho, llegando en algunos casos a clavarse en la roca. La segunda cortará menos roca por impacto, de modo que no fatigará el varillaje ni clavará la barrena, siempre que su impacto supere la energía necesaria para romper esa menor cantidad de roca.

Por tanto, las perforadoras con un gran pistón, gran carrera y presiones bajas son una tendencia antigua que se sustituye por perforadoras hidráulicas, con altas presiones, pistones y carrera pequeños y gran número de impactos por minuto.

Os dejo a continuación la demostración de esta formulación que, espero, os sea de utilidad.

Descargar (PDF, 90KB)

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación con martillo en fondo

La perforación con martillo en fondo (D.T.H. down the hole), desarrollada por Stenuick en 1951, se basa en que un martillo golpea directamente la boca en el fondo de la perforación. De esta forma se evita la pérdida de energía transmitida por la percusión del pistón a través del varillaje (a partir de 15-20 m, los martillos en cabeza dejan de ser efectivos). Hoy se pueden alcanzar profundidades superiores a los 100 m con rendimientos de 60 a 100 m/turno. El martillo en fondo y la boca forman una unidad integrada dentro del barreno. Esto garantiza una velocidad de perforación bastante homogénea con el aumento de la profundidad del taladro, aunque es normal que disminuya la velocidad al reducirse la velocidad de barrido con la profundidad. El accionamiento del pistón se lleva a cabo neumáticamente, mientras que la rotación puede ser neumática o hidráulica.

El martillo DTH consta de un cilindro cuya longitud es función de la carrera del pistón y de diámetro acorde con el diámetro de perforación. En el extremo de este cilindro se aloja la boca de perforación, alojada en un portabocas. El varillaje se sustituye por un tubo hueco que conecta el martillo con el equipo y que se encarga de transmitir el par de rotación y la fuerza de avance. Los barrenos perforados con martillo en fondo acusan mínimas desviaciones, consiguiendo buenos resultados en rocas muy fracturadas. El varillaje, compuesto por tubos de igual diámetro en toda la longitud, no tiene acoplamientos que puedan atascar la perforación. La rotación la realiza un motor neumático o hidráulico montado en el carro, al igual que el sistema de avance. El aire de escape limpia el detritus y lo transporta al exterior.

Martillo DTH Secoroc COP 64 Gold. www.dthrotarydrilling.com

El campo de aplicación del martillo DTH son las rocas de resistencia a compresión media-alta (60-100 MPa), utilizando como diámetros más frecuentes los comprendidos entre 85 y 200 mm, aunque podrían ampliarse a diámetros mayores entrando en competencia con los sistemas rotopercutivos hidráulicos con martillo en cabeza. La velocidad de penetración de estos martillos, para diámetros entre 105 y 165 mm, es de 0,5 a 0,6 m/min, con presiones de trabajo entre 1800 kPa y 2000 kPa. La frecuencia de golpeo oscila entre 600 y 1600 golpes por minuto. En cuanto al empuje, son necesarios unos 85 kg por cada cm de diámetro. Para hacerse una idea, con diámetros de 125 mm podemos obtener el doble de potencia que con un diámetro de 100 mm, a igualdad de presión y carrera de pistón.

Hoy en día, el sistema DTH, en el rango de 76 a 125 mm, se está sustituyendo por la perforación con martillo hidráulico en cabeza.

Las ventajas de la perforación con martillo DTH, frente a otros sistemas son:

  • Velocidad de penetración prácticamente constante con el aumento de la profundidad de perforación
  • Salvo en rocas muy abrasivas, desgastes de las bocas menores que con martillo en cabeza
  • Vida más larga de los tubos que de las varillas y manguitos de los martillos en cabeza
  • Desviaciones pequeñas de los barrenos, por lo que son adecuados para profundidades largas
  • Menor energía de impacto y más frecuencia, lo cual es apto para macizos muy fracturados o desfavorables
  • Par y velocidad de rotación menor que otros métodos
  • No necesitan barras de carga, lo cual permite pequeños carros de perforación para barrenos de gran diámetro y profundidad
  • Menor coste por metro lineal que con perforación rotativa en diámetros grandes y rocas muy duras
  • Consumo de aire comprimido más bajo que con martillo en cabeza neumático
  • Nivel de ruido inferior al estar el martillo dentro de la perforación.

En cuanto a los inconvenientes de este sistema:

  • Velocidades de penetración bajas
  • Cada martillo está diseñado para una gama de diámetros muy estrecha que oscila en unos 12 mm
  • El diámetro más pequeño está limitado por las dimensiones del martillo para un rendimiento aceptable (unos 76 mm)
  • El costo de un martillo de fondo es muy elevado frente a la pequeña inversión de un tren de varillaje
  • Riesgo de pérdida del martillo en el interior de la perforación
  • Se necesitan compresores de alta presión con elevados consumos energéticos.

 

Os dejo a continuación algunos vídeos de este sistema de perforación. En el primero os dejo un Polimedia que espero os sea útil.

En el siguiente vemos una máquina perforadora neumática  Stenuick modelo MD25-60 con motor de rotación Stenuick mod F574, martillo del fondo de 2″, broca de carburo de tungsteno de 2 ¾ ” y 3″ y tubos de perforación de 60 mm de diámetro por 2 m.

En este vemos una perforación de anclajes con martillo de fondo para la estabilización de un talud en roca meteorizada de basalto.

En este otro se puede ver una perforación con DTH a través de estructuras geotécnicas para la ejecución de inyecciones de contacto en una estructura subterránea.

 

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación con martillo en cabeza

Figura 1. Equipo de perforación Simba 7.

La forma habitual de perforación de una roca a rotopercusión es la perforación con martillo en cabeza. El principio de corte se basa en el impacto realizado en el exterior de la perforación de un pistón de acero sobre una barrena o varillaje, que a su vez transmite la energía al fondo del taladro por medio del elemento final (boca) que fragmenta en esquirlas la roca. Para asegurar una sección circular en el barreno, a cada golpe gira el útil para presentar a su corte nueva roca virgen en el fondo del barreno. Además, es preciso evacuar del barreno los detritus (barrido), lo que se consigue mediante insuflado de aire al fondo del taladro. Parte de la energía del impacto se pierde en la transmisión y en los cambios de sección del varillaje, por lo que la velocidad de penetración de la perforación disminuirá con la profundidad del barreno. Es un sistema que conceptualmente es similar al barrenado manual, donde un operario golpea con una maza la cabeza de una barrena.

Se pueden distinguir los martillos manuales de las perforadoras de martillo en cabeza propiamente dichas. Los primeros son equipos sencillos, actualmente en desuso, salvo en demoliciones o perforaciones de pequeña sección no mecanizable. Los segundos son equipos pesados que, en consecuencia, precisan de su montaje en chasis especiales.

Las perforadoras con martillo en cabeza pueden accionarse mediante martillos neumáticos y martillos hidráulicos. El desarrollo de los martillos hidráulicos en los años sesenta y comienzos de los setenta supuso un gran avance tecnológico en la perforación de rocas.

Tanto las perforadoras neumáticas como las hidráulicas constan de los siguientes elementos:

  • Un cilindro que con su movimiento alternativo golpea el extremo de una barrena
  • Un mecanismo de rotación incorporado al pistón (barra rifle o rueda trinquete) o independiente de este (motor de rotación)
  • Un sistema que permite el barrido del barreno mediante una aguja de barrido que atraviesa el pistón o bien por medio de la inyección del fluido de barrido lateralmente en la cabeza frontal de la perforadora

 

Perforadoras neumáticas

El accionamiento de estas perforadoras es mediante aire comprimido, con una misma presión tanto para el mecanismo de impacto como para el aire de barrido. Son perforadoras que se han empleado de forma tradicional para barrenos de menos de 150 mm de diámetro. Su peso y tamaño son menores que el de las perforadoras hidráulicas. Presentan un consumo de aire de unos 2,1-2,8 m³/min por cada centímetro de diámetro, la velocidad de rotación es de 40-400 rpm y la carrera del pistón de 35-95 mm.

La rotación del varillaje puede realizarse mediante:

  • Barra estriada o rueda de trinquete: Muy generalizado en perforadoras ligeras
  • Motor independiente: Barrenos de gran diámetro

Las longitudes de perforación con este sistema no superan habitualmente los 30 m debido a las importantes pérdidas de energía debidas a la transmisión de la onda de choque y a las desviaciones de los barrenos. Lo normal es utilizar barrenos cortos, con longitudes entre 2 y 15 m y el empleo de diámetros pequeños, entre 38 y 100 mm. Además, a medida que aumenta la longitud del barreno, se precisa de una mayor presión de aire de barrido.

Entre las ventajas de las perforadoras neumáticas cabe destacar las siguientes:

  • Gran simplicidad
  • Fiabilidad y bajo mantenimiento
  • Facilidad de reparación
  • Precios de adquisición bajos

 

Perforadoras hidráulicas

Estos equipos se introdujeron al principio en los trabajos subterráneos, pero poco a poco, se están imponiendo en la perforación en superficie. Estructuralmente, la perforadora hidráulica es similar a la neumática, aunque el accionamiento se realiza mediante un grupo de bombas que suministran un caudal de aceite que impulsa los componentes. Además, estas unidades van equipadas con un compresor cuya función es suministrar aire para el barrido del detritus, pudiéndose incrementar la presión del aire con la profundidad del barreno. La presión de trabajo de estos equipos ronda entre 7,5 y 25 MPa, la potencia de impacto entre 6 y 20 kW y la velocidad de rotación entre 0 y 500 rpm. Aquí el consumo relativo de aire comprimido es menor, entre 0,6 y 0,9 m³/min por cada centímetro de diámetro.

Respecto a las neumáticas, necesitan de una mayor inversión inicial, siendo las reparaciones más complejas y costosas, y requiriendo una mejor organización y formación del personal de mantenimiento. En cambio, las ventajas tecnológicas de las perforadoras hidráulicas son las siguientes:

  • Menor consumo de energía: tres veces menos
  • Menor coste de accesorios de perforación: incremento del 20% de la vida útil del varillaje
  • Mayor capacidad de perforación: velocidades de penetración entre un 50 y un 100% mayores
  • Mejores condiciones ambientales: más limpios y silenciosos
  • Mayor elasticidad en la operación: posibilidad de variar la presión de accionamiento, la energía y la frecuencia de golpeo
  • Mayor facilidad para la automatización: cambio de varillaje, mecanismos antiatranque, etc.
Carro para martillo en fondo semihidráulico AirROC D45 (Atlas Copco)

Os dejo un Polimedia explicativo sobre este sistema de perforación que espero os sea útil.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa de rocas

Figura 1. Trépano tricono típico. Wikipedia

El principio utilizado por las perforadoras rotativas consiste en aplicar energía a la roca haciendo rotar un útil de corte o destroza conjuntamente con la acción de una gran fuerza de empuje. Los diámetros habituales de barreno conseguidos con este tipo de perforadoras oscilan entre 50 y 311 mm, estando los mayores diámetros especialmente indicados para los grandes volúmenes de excavación.

Este sistema consta de una fuente de energía, una columna de barras o tubos individuales o conectados en serie, que transmiten el peso, la rotación y el aire de barrido a una boca con dientes de acero o de insertos de carburo de tungsteno que deben fragmentar la roca. De este modo, se puede distinguir la perforación con tricono (Figura 1) y la perforación con útiles de corte (Figura 2). El primer sistema se aplica a rocas de dureza media a alta y el segundo a rocas blandas.

Figura 2. Trialeta. www.krham.com

La fuente primaria de potencia utilizada por estos equipos puede ser eléctrica o motores diésel, y su aplicación se realiza mediante mecanismos de transmisión mecánicos e hidráulicos. La energía se transmite a través de las barras de perforación, que giran al mismo tiempo que penetra la boca, debido a la intensidad de la fuerza de avance. Prácticamente, casi sin excepciones, esta fuerza de empuje se obtiene a partir de un motor hidráulico. En este tipo de perforación, las pérdidas de energía en las barras y la boca son despreciables, por este motivo, la velocidad de penetración no varía apenas con la longitud del barreno. Para girar las barras y conseguir el par necesario, estas máquinas tienen un sistema de rotación montado habitualmente sobre un bastidor que se desliza a lo largo del mástil de la perforadora. El barrido del detritus de la perforación se realiza con aire comprimido, para lo cual el equipo está dotado de uno o dos compresores ubicados en la sala de máquinas.

El empuje a aplicar dependerá de la resistencia de la roca y del diámetro de la perforación. El mecanismo de empuje está diseñado para aplicar una fuerza del orden del 50% del peso de la máquina, alcanzando los equipos de mayor tamaño un peso de unas 120 toneladas. La rotación la provee un motor eléctrico o hidráulico y se transmite a la herramienta por medio de la columna de barras. Los sistemas de rotación pueden ser los siguientes:

  • Directos
  • De mesa de rotación
  • Falsa barra Kelly
Figura 3. Sistemas de rotación: (a) directo, (b) mesa de rotación y (c) falsa barra Kelly

A su vez, estas perforadoras se pueden montar sobre orugas o sobre neumáticos. La elección de uno u otro depende de las condiciones del terreno y de factores como la maniobrabilidad, la movilidad o la estabilidad de la máquina. El montaje sobre orugas se utiliza preferentemente en las grandes excavaciones a cielo abierto, donde los requerimientos de movilidad son escasos. Su limitación en cuanto a menor velocidad de traslación, 2 a 3 km/h, es poco relevante cuando el equipo permanece durante largos períodos de tiempo operando en un mismo banco o sector de la excavación. En tareas medianas, donde se requiere un desplazamiento más frecuente y ágil del equipo, se prefiere el montaje sobre neumáticos. Estos equipos van montados sobre un camión de dos o tres ejes, los más ligeros, y solo los de mayor tamaño se construyen sobre un chasis de cuatro ejes. Su velocidad media de desplazamiento es de 20 a 30 km/h.

El éxito de la perforación rotativa depende de una serie de factores, unos directamente relacionados con la máquina y otros que son factores externos a la misma. Entre los primeros caben resaltar la magnitud del empuje sobre la roca, la velocidad de rotación, el desgaste de la boca, el diámetro del barreno y el caudal de aire necesario para la evacuación del detritus. Entre los factores que no dependen de la máquina se encuentran las características del macizo rocoso y los rendimientos dependientes del operario.

TIPO DE ROCA

RESISTENCIA A

COMPRESIÓN SIMPLE (MPa)

VELOCIDAD

(rpm)

Muy blandas

< 40

120 – 100

Blandas

40 – 80

100 – 80

Medianas

80 – 120

80 – 60

Duras

120 – 200

60 – 40

Muy duras

> 200

40 – 30

 

En el Polimedia que os presento se resumen las ideas más importantes acerca de la perforación rotativa de roca. Espero que os sea útil.

Os dejo a continuación un pequeño vídeo donde se muestra el funcionamiento del tricono.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.

La perforación a rotopercusión

Marini Castoro Neumático

La perforación a rotopercusión es el sistema clásico de perforación de barrenos que aparece con el desarrollo industrial del siglo XIX. Este sistema, junto con la invención de la dinamita, constituyen dos hitos en el desarrollo del arranque de rocas en minería y obras civiles. Este tipo de perforadoras se usan tanto en obras públicas subterráneas como en minas o explotaciones a cielo abierto: túneles, carreteras, cavernas de centrales hidráulicas, etc.

El principio de perforación de estos equipos se basa en el impacto de una pieza de acero llamada pistón, sobre un útil, que a su vez transmite la energía al fondo del barreno, por medio de un elemento final denominado boca o bit. Este sistema de perforación suele usarse en terrenos muy duros y semiduros.

Las acciones básicas que tienen lugar sobre el sistema de transmisión de energía hasta la boca de perforación son las siguientes:

  1. La percusión: los impactos producidos por el golpe del pistón originan unas ondas de choque se que transmiten a la boca a través del varillaje
  2. La rotación: se hace girar la boca para cambiar la zona de impacto
  3. El empuje: para mantener en contacto la roca con la boca
  4. El barrido: donde el fluido permite extraer el detritus del fondo del barreno

Rotopercusión

Dependiendo del lugar donde esté instalado el martillo, las perforadoras a rotopercusión se clasifican en:

  • Perforadoras con martillo en cabeza, que a su vez pueden ser de accionamiento neumático o hidráulico. Aquí la rotación y la percusión se producen fuera del barreno, transmitiéndose a través de una espiga y del varillaje hasta la boca de perforación.
  • Perforadoras con martillo en fondo, en inglés Down the Hole (D.T.H.), donde la acción del pistón se lleva a cabo de una forma neumática y la acción de rotación puede ser tanto de tipo hidráulico como neumático. En ese caso la percusión se realiza directamente sobre la boca de perforación, mientras que la rotación se efectúa en el exterior del barreno.

Perforación a rotopercusión

Las gamas más habituales de diámetros utilizados con estas perforadoras dependen del campo de aplicación, según se puede ver en la tabla siguiente:

Tipo de perforadora

Diámetro de perforación (mm)

Cielo abierto

Subterráneo

Martillo en cabeza

50 – 127

38 – 65

Martillo en fondo

75 – 200

100 – 165

En los martillos manuales, la rotación se transmite a través del buje de rotación del martillo y se acciona por el propio mecanismo del pistón, en función de los impactos: a menor número de impactos, debe corresponder un menor par de rotación.

En los equipos de perforación pesados, la rotación se acciona a través de un motor independiente, lo que permite actuar bien sobre la rotación, bien sobre la percusión, según los condicionantes del terreno.

Como ventajas de la perforación rotopercutiva se pueden señalar las siguientes:

  • Su aplicación a todo tipo de rocas, blandas o duras
  • Amplia disponibilidad de diámetros
  • Versatilidad en los equipos y gran movilidad
  • Se maneja con un solo operario
  • Rapidez y accesibilidad en el mantenimiento de los equipos
  • Precio de adquisición no muy elevado

En el siguiente Polimedia podéis ver una explicación sobre este sistema.

En el vídeo que os muestro a continuación, podéis ver cómo golpea una perforadora con martillo de fondo. Espero que os guste.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.