Redes neuronales y metamodelos Kriging para la optimización de la energía en puentes losa pretensados

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. El artículo evalúa la eficacia de las redes neuronales artificiales y los modelos sustitutos de Kriging para optimizar la energía incorporada de los puentes de losas pretensadas, y proporciona recomendaciones prácticas para mejorar el diseño y la sostenibilidad.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

A continuación se recoge un resumen sintético del trabajo.

 

 

Introducción

  • La industria de la construcción contribuye significativamente al consumo mundial de energía y a las emisiones de gases de efecto invernadero, lo que suscita un interés creciente en mejorar las prácticas de sostenibilidad.
  • El hormigón pretensado destaca por sus ventajas, que incluyen la durabilidad, la reducción del mantenimiento y la rapidez de construcción, a pesar de los costes iniciales más altos en comparación con los métodos tradicionales.
  • Las investigaciones indican que existe una brecha en la optimización de la energía incorporada en los puentes de losas de hormigón, lo que exige una mayor exploración y metodologías innovadoras, como el Kriging y las redes neuronales artificiales, para optimizar su diseño de manera efectiva.

Descripción de la cubierta del puente de losa aligerada

  • Los diseñadores suelen utilizar una relación canto/luz de 1/25 para las losas de carreteras con el fin de garantizar su integridad estructural. Los diseños de losas aligeradas ofrecen ventajas en cuanto a rigidez a la flexión y adaptabilidad.
  • El estudio se centra en una configuración de losas aligeradas pretensadas adecuada para los pasos superiores, con el objetivo de mejorar la eficiencia del diseño y el rendimiento estructural.
  • La teoría del estado límite se emplea para verificar la resistencia estructural mediante el uso de software avanzado para el modelado tridimensional y el análisis de cargas.
Figura 2. Imagen aérea de la estructura, situada en Cocentaina (Alicante). Imagen: Google Maps.

Metodología

  • El estudio analiza varios materiales, incluidos tipos específicos de acero y calidades de hormigón, para optimizar el diseño del puente de losa aligerada.
  • Se utilizan dos metamodelos predictivos, Kriging y las redes neuronales, con el fin de optimizar el diseño propuesto del puente de losas.
  • La metodología incluye una fase de diversificación para la optimización inicial y una fase de intensificación para refinar los resultados, midiendo los errores de predicción mediante el error cuadrático medio (RMSE).

Metamodelo Kriging

  • Kriging se emplea para estimar las necesidades de energía del puente de losas, utilizando un enfoque determinista que proporciona respuestas consistentes basadas en los datos de entrada.
  • La «caja de herramientas Kriging de MATLAB» se utiliza para crear un modelo sustituto, y el LHS (LHS) mejora el proceso de muestreo para representar mejor el espacio de diseño.
  • Este método permite realizar pruebas computacionales eficientes y, al mismo tiempo, minimizar los errores sistemáticos, lo que lo hace adecuado para tareas complejas de optimización estructural.

Red neuronal artificial

  • Las ANN están estructuradas con capas de neuronas, donde las capas ocultas utilizan funciones sigmoideas para procesar las entradas y la capa de salida emplea funciones lineales para las predicciones.
  • El modelo de perceptrón multicapa (MLP) destaca por su capacidad para aproximar funciones de manera eficaz, basándose en el algoritmo de retropropagación para el entrenamiento.
  • El estudio hace hincapié en la importancia de la validación cruzada para evitar el sobreaprendizaje y garantizar que el rendimiento de la red neuronal sea sólido en los diferentes conjuntos de datos.

Visualización de los datos observados

  • La gráfica de contorno de los datos observados revela múltiples valores óptimos locales, lo que indica la complejidad del problema de optimización y las limitaciones de los modelos de regresión tradicionales.
  • Esta complejidad requiere el uso de modelos predictivos avanzados para identificar con precisión las soluciones óptimas dentro del espacio de diseño.

Comparación de modelos predictivos

  • Los modelos de Kriging son deterministas, mientras que las redes neuronales introducen variabilidad debido a que se basan en la selección aleatoria de datos para su entrenamiento y validación.
  • El rendimiento de la red neuronal se estabiliza mediante múltiples ejecuciones, lo que permite una comparación más fiable de los valores medios con las predicciones de Kriging.

Análisis de errores

  • El promedio de las predicciones de la red neuronal coincide estrechamente con los resultados del modelo de Kriging, aunque la red neuronal presenta un error cuadrático medio (MSE) y un error cuadrático medio (RMSE) más bajos.
  • El análisis destaca la necesidad de una evaluación exhaustiva de la capacidad de la red neuronal para identificar los valores óptimos, comparando las predicciones entre todos los puntos de datos.

Recomendaciones prácticas

  • El estudio proporciona recomendaciones prácticas para reducir las emisiones en los puentes de losas pretensadas, incluidas directrices específicas sobre el contenido de hormigón y refuerzo.
  • Los hallazgos sugieren que tanto las redes neuronales como las de Kriging pueden identificar eficazmente los valores óptimos locales, lo que ayuda a los ingenieros estructurales a optimizar los diseños para obtener beneficios económicos y ambientales.
  • Haciendo hincapié en la importancia de los modelos sustitutivos, la investigación aboga por su uso para perfeccionar los procesos de diseño y mejorar los resultados en materia de sostenibilidad.

Conclusiones

  • Se subraya la complejidad de la superficie de respuesta al consumo de energía, ya que tanto Kriging como las redes neuronales predicen valores superiores a los observados.
  • El modelo de Kriging muestra un error relativo menor en las predicciones óptimas locales en comparación con la red neuronal, que, sin embargo, muestra un rendimiento de RMSE superior.
  • El estudio concluye que, si bien Kriging proporciona resultados deterministas, las redes neuronales requieren múltiples iteraciones para estabilizar los resultados, lo que aporta información valiosa para optimizar los diseños estructurales.

ABSTRACT:

The main objective of this study is to assess and contrast the efficacy of distinct spatial prediction methods in a simulation aimed at optimizing the embodied energy during the construction of prestressed slab bridge decks. A literature review and cross-sectional analysis have identified crucial design parameters that directly affect the design and construction of bridge decks. This analysis determines the critical design variables to improve the deck’s energy efficiency, providing practical guidance for engineers and professionals in the field. The methods analyzed in this study are ordinary Kriging and a multilayer Perceptron neural network. The methodology involves analyzing the predictive performance of both models through error analysis and assessing their ability to identify local optima on the response surface. Results show that both models generally overestimate observed values. The Kriging model with second-order polynomials yields a 4% relative error at the local optimum, while the neural network achieves lower root-mean-square errors (RMSE). Neither the Kriging model nor the neural network provide precise predictions, but point to promising solution regions. Optimizing the response surface to find a local minimum is crucial. High slenderness ratios (around 1/28) and 40 MPa concrete grade are recommended to improve energy efficiency.

KEYWORDS:

bridges; embodied energy; optimization; prestressed concrete; artificial neural network; surrogate model; Kriging; sustainability

REFERENCE:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450; DOI:10.3390/su16198450

Descargar (PDF, 4.78MB)