¿Qué es la optimización por cristalización simulada?

La cristalización simulada (también llamado recocido simulado)  “Simulated Annealing, SA” constituye una de las estrategias a las que se recurre en la resolución de los problemas de optimización combinatoria. Kirkpatrick, Gelatt y Vecchi la propusieron por primera vez en 1983 y Cerny en 1985 de forma independiente. Estos autores se inspiraron en los trabajos sobre Mecánica Estadística de Metrópolis et al. (1953). La metaheurística despliega una estructura que se inserta cómodamente en la programación, mostrando además una considerable habilidad para escapar de los óptimos locales. Fue una técnica que experimentó un auge considerable en la década de los 80 para resolver los modelos matemáticos de optimización.

La energía de un sistema termodinámico se compara con la función de coste evaluada para una solución admisible de un problema de optimización combinatoria. En ambos casos se trata de evolucionar de un estado a otro de menor energía o coste. El acceso de un estado metaestable a otro se alcanza introduciendo “ruido” con un parámetro de control al que se denomina temperatura. Su reducción adecuada permite, con una elevada probabilidad, que un sistema termodinámico adquiera un mínimo global de energía. Conceptualmente es un algoritmo de búsqueda por entornos, que selecciona candidatos de forma aleatoria. La alternativa se aprueba si perfecciona la solución actual (D menor o igual que cero); en caso contrario, será aceptada con una probabilidad  (e(-D/T) si D>0, donde T es el parámetro temperatura) decreciente con el aumento de la diferencia entre los costes de la solución candidata y la actual. El proceso se repite cuando la propuesta no es admitida. La selección aleatoria de soluciones degradadas permite eludir los mínimos locales. La cristalización simulada se codifica fácilmente, incluso en problemas complejos y con funciones objetivo arbitrarias. Además, con independencia de la solución inicial, el algoritmo converge estadísticamente a la solución óptima (Lundy y Mees, 1986). En cualquier caso, SA proporciona generalmente soluciones valiosas, aunque no informa si ha llegado al óptimo absoluto. Por contra, al ser un procedimiento general, en ocasiones no resulta competitivo, aunque sí comparable, ante otros específicos que aprovechan información adicional del problema. El algoritmo es lento, especialmente si la función objetivo es costosa en su tiempo de computación. Además, la cristalización simulada pierde terreno frente a otros métodos más simples y rápidos como el descenso local cuando el espacio de las soluciones es poco abrupto o escasean los mínimos locales.

Os dejo un vídeo explicativo:

Referencias

CERNY, V. (1985). Thermodynamical approach to the traveling salesman problem: an efficient simulated algorithm. Journal of Optimization Theory and Applications, 45: 41-51.

KIRKPATRICHK, S.; GELATT, C.D.; VECCHI, M.P. (1983). Optimization by simulated annealing. Science, 220(4598): 671-680.

LUNDY, M.; MEES, A. (1986). Convergence of an Annealing Algorithm. Mathematical programming, 34:111-124.

METROPOLIS, N.; ROSENBLUTH, A.W.; ROSENBLUTH, M.N.; TELLER, A.H.; TELER, E. (1953). Equation of State Calculation by Fast Computing Machines. Journal of Chemical Physics, 21:1087-1092.

GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)