Compresor de pistón

Un compresor de pistón, compresor volumétrico alternativo o compresor de émbolo es un compresor de gases que funciona por el desplazamiento de un émbolo dentro de un cilindro (puede tener varios) movido por un cigüeñal para obtener gases a alta presión. El gas a comprimir entra, a presión ambiental, por la válvula de admisión en el cilindro, donde se comprime con el pistón, que tiene un movimiento alternativo mediante un cigüeñal y un biela, y se descarga, comprimido, por la válvula de descarga.

Es uno de los compresores más antiguos y conocidos, aunque hoy se emplean especialmente los compresores rotativos. El principio de funcionamiento del compresor alternativo, basado en el desalojamiento del aire por el émbolo, permite fabricar máquinas con pequeño diámetro y un recorrido insignificante del pistón, que desarrollan alta presión con un caudal relativamente pequeño.

Los compresores de pistones pueden clasificarse atendiendo a distintas características:

Por el número de cilindros:

  • Monocilíndricos.
  • Bicilíndricos.
  • Policilíndricos

Por la forma de trabajar el émbolo:

  • De simple efecto: la compresión se efectúa por una cara del pistón.
  • De doble efecto: la compresión se realiza por las dos caras del pistón

Por el número de etapas empleadas en la compresión:

  • Monoetápico.
  • Bietápicos.
  • Polietápicos.

Por la disposición de los pistones:

  •  Horizontales.
  • Verticales.
  • En V.
  • A escuadra.
Compresor de pistón

Los compresores monoetápicos son de poca potencia. La presión final alcanzada es de 4 a 5 bares, con una temperatura de salida entorno a los 180ºC (±20ºC). La refrigeración es por aire. Los compresores bietápicos son los más utilizados. Primero se llega de 2 a 3 bares para luego alcanzar unos 8 bares, con una temperatura de salida de 150ºC (±15ºC). La refrigeración puede ser por aire con un ventilador o por una corriente de agua.

Algunos de los compresores más habituales en el mercado presentan las siguientes características:

  • De simple efecto, monoetápicos y refrigeración por aire: capacidad hasta 1 m3/min, relación potencia (CV)/capacidad (m3/min) inferior a 10.
  • De simple efecto, bietápicos y refrigeración por aire: capacidad de 2 a 10 m3/min, relación potencia (CV)/capacidad (m3/min) de 7,5 a 8,5.
  • De doble efecto, bietápicos y refrigeración por agua: capacidad de 10 a 100 m3/min, relación potencia (CV)/capacidad (m3/min) de 6,5 a 7,5.

En la Figura siguiente se representan las cuatro fases del ciclo termodinámico que se desarrollan en el caso más simple de un compresor monoetápico de un cilindro de simple efecto.

  • Fase 1, admisión (4-1): Con la válvula de aspiración abierta, el pistón situado en el punto 4 inicia su avance hasta el 1 en el que se cierra la válvula. Entra aire a una presión P1.
  • Fase 2, compresión (1-2): Al cerrarse la válvula de admisión, el pistón retrocede hasta 2 y el aire se comprime hasta la presión P2.
  • Fase 3, expulsión (2-3): En 2 se abre la válvula de expulsión y el pistón al seguir retrocediendo hasta 3 va expulsando el aire y dejando el volumen V3 correspondiente al espacio muerto del cilindro.
  • Fase 4, expansión (3-4): En 3 se cierra la válvula de expulsión y el aire encerrado en el cilindro se expansiona haciendo avanzar el pistón hasta 4. En ese instante se abre la válvula de admisión, reiniciándose de nuevo el ciclo.

 

Ciclo termodinamico piston
Ciclo termodinámico de un compresor alternativo de un cilindro

Os dejo a continuación una animación sobre un compresor de pistón de doble efecto:

También os dejo una presentación del profesor Pedro Loja sobre el compresor de pistón:

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

El cigüeñal

El cigüeñal es un árbol de transmisión, con codos y contrapesos, presente en ciertas máquinas que, aplicando el principio del mecanismo de biela – manivela, transforma el movimiento rectilíneo alternativo en circular uniforme y viceversa. En realidad consiste en un conjunto de manivelas. Cada manivela consta de una parte llamada muñequilla y dos brazos que acaban en el eje giratorio del cigüeñal. Cada muñequilla se une una biela, la cual a su vez está unida por el otro extremo a un pistón. En los motores de automóviles, el extremo de la biela opuesta al bulón del pistón (cabeza de biela) conecta con la muñequilla, la cual junto con la fuerza ejercida por el pistón sobre el otro extremo (pie de biela) genera el par motor instantáneo. El cigüeñal va sujeto en los apoyos, siendo el eje que une los apoyos el eje del motor.

 

Os dejo a continuación un vídeo explicativo que espero os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.