Entendiendo la protección sísmica: cómo hacemos nuestros edificios más seguros.

Figura 1. El gran terremoto de 1985 en Chile. https://novaciencia.es/el-gran-terremoto-de-1985-en-chile-un-seismo-que-se-podria-repetir-dentro-de-40-anos/

1. Introducción: viviendo en un país sísmico.

Vivir en un país como Chile significa comprender que el suelo que pisamos no es estático, sino que habitamos una tierra de geografía imponente, forjada por la misma energía que, de vez en cuando, nos recuerda su poder. Somos uno de los países con mayor actividad sísmica del planeta, una realidad que nos obliga a respetar la naturaleza y a liderar el desarrollo de una ingeniería resiliente. Para comprender la magnitud de nuestro desafío, basta con una cifra contundente proporcionada por el experto sismólogo Sergio Barrientos: el 46,5 % de toda la energía sísmica mundial del siglo XX se liberó en Chile.

Esta convivencia con los seísmos ha moldeado nuestra forma de construir. La normativa chilena (NCh433) establece una filosofía de diseño sismorresistente con objetivos claros y escalonados enfocados, ante todo, en la seguridad de las personas.

  • Sismos moderados: la estructura debe resistir sin sufrir ningún daño.
  • Sismos medianos: se aceptan daños, pero estos deben limitarse a elementos «no estructurales», como tabiques o techos falsos.
  • Sismos severos: el objetivo primordial es evitar el colapso de la estructura para salvaguardar la vida de sus ocupantes, aunque esto implique daños significativos e irreparables en el edificio.

El mensaje clave es que la meta mínima es sobrevivir. Un edificio puede quedar completamente inutilizable tras un gran terremoto, pero si no se derrumbó, cumplió su función principal. Sin embargo, tras la experiencia del terremoto de 2010, la población exige «algo más que evitar el colapso». En la actualidad, no solo se busca sobrevivir, sino también proteger la inversión, garantizar la funcionalidad de los edificios críticos y asegurar la tranquilidad.

Para responder a estas nuevas y más altas expectativas, la ingeniería ha desarrollado tecnologías avanzadas que van más allá de la normativa: los sistemas de protección sísmica.

2. ¿Qué son los sistemas de protección sísmica?

Para combatir la energía destructiva de un terremoto, la ingeniería ha diseñado el aislamiento sísmico y la disipación de energía. Ambos son sistemas pasivos, es decir, no requieren energía externa para funcionar, y su objetivo es reducir drásticamente el daño. Sin embargo, sus estrategias son fundamentalmente diferentes:

Sistema Principio fundamental (analogía) Objetivo principal
Aislamiento sísmico Actúa como un filtro o un campo de fuerza. Separa o «desacopla» el edificio del suelo, evitando que la mayor parte de la energía del sismo ingrese a la estructura. Limitar la energía que el sismo transfiere a la superestructura.
Disipación de energía Actúa como los amortiguadores. Absorbe la energía que ya entró al edificio, concentrándola en dispositivos especiales para proteger la estructura principal. Disipar la energía en dispositivos especializados, reduciendo el daño a componentes estructurales y no estructurales.

En resumen, usando una metáfora bélica, el aislamiento busca ganar la batalla impidiendo que el enemigo entre en la fortaleza, mientras que la disipación gana la batalla gestionando de forma inteligente al enemigo una vez que ha cruzado los muros. Ambas estrategias buscan un nivel de rendimiento muy superior al mínimo exigido, que es simplemente evitar el colapso.

3. Desacoplando el edificio del terremoto: cómo funcionan los aisladores sísmicos.

Pero, ¿cómo se logra «desconectar» un gigante de hormigón de la tierra? El aislamiento sísmico lo consigue instalando una serie de elementos flexibles entre la cimentación y la estructura principal. Estos dispositivos ralentizan el movimiento del edificio y transforman las sacudidas violentas y rápidas del seísmo en un vaivén lento y suave. En esencia, el edificio navega el terremoto en lugar de luchar contra él.

Existen dos categorías principales de aisladores:

  • Aislantes elastoméricos: Son extremadamente rígidos en sentido vertical para soportar el peso colosal del edificio, pero muy flexibles en sentido horizontal para permitir el movimiento. Una versión avanzada incluye un núcleo de plomo (LRB) que, además de aislar, disipa energía.
  • Aislantes deslizantes (de fricción): Durante un terremoto, un deslizador se mueve sobre una superficie curva de acero inoxidable. La fricción frena el movimiento y disipa energía, y la forma del plato guía suavemente el edificio de vuelta a su centro una vez que todo termina.
Figura 2. Aisladores de caucho y plomo. https://sites.ipleiria.pt/seismicknowledge/tag/aisladores-de-caucho-y-plomo/

El principal beneficio del aislamiento para los ocupantes y los bienes es que, al reducir drásticamente los movimientos, se protege no solo la estructura, sino también los muros, las ventanas y, fundamentalmente, todo lo que hay dentro: desde equipos médicos y ordenadores hasta objetos valiosos.

4. Absorbiendo el impacto: cómo funcionan los disipadores de energía.

Pero, ¿qué sucede si no podemos evitar que la energía entre? La respuesta es mantenerla bajo control. Esa es la misión de los disipadores de energía. Se trata de dispositivos especiales que se añaden a la estructura para que actúen como «fusibles» mecánicos, diseñados para absorber la mayor parte del impacto del seísmo.

Estos dispositivos se deforman o se mueven de manera controlada, convirtiendo la energía cinética en calor, que se disipa de forma inofensiva. De esta manera, «toman el golpe» del terremoto y protegen los elementos estructurales principales, como vigas, columnas y muros.

Dos ejemplos ilustran bien el concepto:

  • Los disipadores metálicos son piezas de metal con formas especiales diseñadas para doblarse de manera controlada. Al hacerlo, absorben una gran cantidad de energía de forma similar a como se calienta un clip de papel si lo doblas repetidamente, convirtiendo la energía cinética en calor inofensivo.
  • Los disipadores fluido-viscosos funcionan de manera muy similar a los amortiguadores de un automóvil, pero a gran escala. Consisten en un pistón que fuerza el paso de un fluido muy espeso a través de pequeños orificios. Este proceso frena el movimiento del edificio y convierte la energía cinética del seísmo en calor.
Figura 3. Disipadores sísmicos utilizados en la Torre Titanium (Chile). https://sites.ipleiria.pt/seismicknowledge/torre-titanium-la-portada/

 

Figura 4. Amortiguador viscoso. Puente Amolanas (Chile). https://www.cec.uchile.cl/~renadic/anexos/amolana2.html

El resultado es que la energía es absorbida por estos elementos de sacrificio. Esto no solo minimiza el daño general, sino que tiene una ventaja práctica fundamental: después de un terremoto intenso, es mucho más rápido y económico inspeccionar y reemplazar estos «fusibles» diseñados para fallar que reparar las vigas o columnas, que constituyen el esqueleto del edificio.

5. Más allá de sobrevivir: ¿por qué es importante invertir en protección sísmica?

La implantación de estos sistemas no solo supone una mejora técnica, sino que constituye una inversión estratégica que redefine el concepto de seguridad en un país sísmico. Sus beneficios más relevantes son profundamente humanos.

  • Manteniendo en pie lo esencial: continuidad operativa para infraestructuras críticas, como hospitales, aeropuertos o centros de datos, seguir funcionando durante y después de un seísmo es vital. Un caso emblemático es el del Teaching Hospital of USC en el terremoto de Northridge (1994). Gracias a su aislamiento sísmico, permaneció totalmente operativo, mientras que un hospital cercano de diseño convencional tuvo que ser evacuado y sufrió daños por valor de 400 millones de dólares.
  • Protegiendo más que ladrillos: estos sistemas reducen drásticamente los costes de reparación, pero su verdadero valor radica en proteger aquello que el dinero no siempre puede reemplazar. Salvaguardar equipos médicos de vanguardia, servidores con información crítica, maquinaria industrial o incluso los recuerdos y bienes de una familia es tan importante como proteger el edificio en sí.
  • La ingeniería de la tranquilidad: al ofrecer un rendimiento superior, estas tecnologías responden directamente a la demanda ciudadana de mayor seguridad. Un edificio que se mueve menos y sufre menos daños no solo protege físicamente a sus ocupantes, sino que también les proporciona una sensación de seguridad y tranquilidad invaluable en los momentos de mayor incertidumbre.

En resumen, los sistemas de protección sísmica suponen un cambio de paradigma en ingeniería, ya que responden a la demanda de una sociedad que no se conforma con sobrevivir, sino que exige activamente resiliencia, funcionalidad y la incalculable paz mental en una de las zonas más sísmicas del mundo.

En este audio, se puede escuchar una conversación sobre este tema.

Aquí tenéis un vídeo resumen, que se centra en este problema.

En este otro vídeo se puede ver un ejemplo.

Os dejo este documento que explica bien el tema del que se ha hablado en este artículo.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más allá del coste inicial: cómo elegir la mejor estrategia de refuerzo sísmico con criterios de sostenibilidad

Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. Desarrolla un marco de decisión multicriterio que integra análisis del ciclo de vida (económico, ambiental y social) con técnicas avanzadas de decisión en entornos de incertidumbre (DEMATEL, DANP y TOPSIS en entornos difusos). El modelo se ha aplicado a un caso real de refuerzo de pilares de hormigón armado en Quito, una ciudad expuesta a riesgos sísmicos y volcánicos, por lo que los resultados son especialmente relevantes para la práctica profesional. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración con la Universidad Central de Ecuador. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la ingeniería civil ha tenido que replantear las estrategias de intervención en el patrimonio edificado. En regiones con alta peligrosidad sísmica, es imperioso reforzar las estructuras de hormigón armado construidas conforme a normativas antiguas. La demolición y reconstrucción, aunque técnicamente es posible, tiene un gran impacto ambiental y social, y supone un coste elevado. Por este motivo, la investigación reciente se orienta hacia metodologías que permitan adoptar soluciones integrales que equilibren la seguridad estructural, la sostenibilidad ambiental, la viabilidad económica y la aceptación social.

Un objetivo ambicioso: tomar decisiones informadas y sostenibles.

El objetivo del estudio es proporcionar a los ingenieros un procedimiento para priorizar técnicas de refuerzo sísmico de pilares de hormigón armado que tenga en cuenta de manera simultánea los siguientes aspectos:

  • Costes de ciclo de vida (LCC): diseño, construcción, mantenimiento y demolición.
  • Impactos ambientales (LCA): consumo de recursos, emisiones con efectos sobre la salud humana y daños a los ecosistemas.
  • Impactos sociales (S-LCA): seguridad de los trabajadores, derechos laborales, efectos sobre la comunidad local, compatibilidad arquitectónica y tiempo de interrupción del uso.

Lo novedoso es que estos criterios no se tratan como compartimentos estancos, sino como un sistema interdependiente en el que las decisiones económicas repercuten en lo social y lo ambiental, y viceversa.

La metodología paso a paso

  1. Selección de criterios: se identificaron nueve indicadores distribuidos en tres dimensiones (económica, ambiental y social).
  2. Análisis de relaciones causales (fuzzy DEMATEL): permitió visualizar qué criterios actúan como causa (por ejemplo, el coste de construcción influye en varios indicadores) y cuáles como efecto (por ejemplo, la salud humana se ve afectada por las decisiones ambientales y económicas).
  3. Determinación de pesos relativos (DANP): se asignó importancia a cada criterio teniendo en cuenta esas interdependencias. La dimensión social emergió como la de mayor peso global (44,6%), seguida de la ambiental (32,2%) y la económica (23,1%).
  4. Evaluación de alternativas (TOPSIS): se compararon tres técnicas habituales de refuerzo de pilares:
    • Encamisado con hormigón armado.
    • Encamisado con acero.
    • Revestimiento con CFRP (polímeros reforzados con fibra de carbono).
      Cada una se evaluó en todas las fases del ciclo de vida, desde la extracción de materias primas hasta el final de vida.

Resultados: el CFRP como mejor opción global

El análisis mostró perfiles muy diferenciados:

  • Hormigón armado (RC):
    • Ventaja: la alternativa más barata en coste inicial y en LCC.
    • Inconveniente: presenta los mayores impactos ambientales y sociales, debido al uso intensivo de materiales (cemento y áridos) y a la mayor duración y molestias de obra.
  • Acero (ST):
    • Ventaja: menor impacto social que el hormigón, reducción moderada de impactos ambientales.
    • Inconveniente: costes significativamente más altos, sobre todo en mantenimiento y fin de vida (protecciones contra corrosión, demolición).
  • CFRP:
    • Ventaja: mejor desempeño ambiental (hasta un 81% menos de consumo de recursos respecto al RC) y social (reducción de hasta un 85% en impactos sobre la sociedad). Además, tiempos de ejecución mucho más cortos, con mínima afectación al uso del edificio.
    • Inconveniente: coste inicial muy superior (un 154% más que el RC).
    • Resultado: pese a ese mayor coste inicial, es la alternativa mejor valorada globalmente cuando se consideran los 50 años de vida útil.

La conclusión es clara: el criterio de sostenibilidad a largo plazo favorece el uso del CFRP, aunque su adopción aún depende de la disponibilidad económica y de la madurez del mercado en cada contexto.

Aplicaciones prácticas en la ingeniería real

Para el proyecto de refuerzo de una estructura, este estudio ofrece varias lecciones prácticas:

  • Justificación técnica y económica: el marco permite presentar a clientes y administraciones un análisis riguroso que va más allá del presupuesto inicial, considerando impactos a 50 años.
  • Planificación de obra: la valoración de los tiempos de intervención y la compatibilidad arquitectónica muestra que soluciones como el CFRP pueden reducir notablemente la interrupción de la actividad en edificios de uso crítico (hospitales, colegios, edificios administrativos).
  • Selección de materiales: el análisis evidencia cómo el acero requiere medidas de protección adicionales frente a la corrosión, mientras que el hormigón aumenta considerablemente la huella de carbono. Esto impulsa a considerar materiales compuestos, incluso con su mayor precio, cuando la sostenibilidad y el servicio a la comunidad son prioritarios.
  • Diseño normativo y políticas públicas: al integrar impactos sociales, el modelo puede orientar normativas de rehabilitación sísmica en países con gran stock de edificaciones vulnerables, priorizando soluciones que maximicen beneficios sociales, además de estructurales.

Conclusiones y recomendaciones para la práctica profesional

  1. Mirar más allá del coste inicial: la ingeniería actual debe adoptar un enfoque de ciclo de vida para que las decisiones sean sostenibles y no hipotequen a futuras generaciones.
  2. Dar peso a lo social: en muchos contextos, el impacto en trabajadores y usuarios pesa tanto como la seguridad estructural. Reducir los tiempos de obra y las afecciones al entorno puede ser determinante.
  3. Promover materiales innovadores: el CFRP se posiciona como un referente en refuerzos sísmicos por su durabilidad, bajo impacto ambiental y beneficios sociales.
  4. Aplicar marcos multicriterio: metodologías como la propuesta permiten al ingeniero defender decisiones complejas con base científica y transparencia.
  5. Aprovechar el modelo en la planificación pública: puede guiar programas de rehabilitación masiva en países sísmicamente activos, optimizando recursos y beneficios.

En definitiva, este trabajo no solo aporta un modelo matemático, sino también una forma de pensar y justificar nuestras decisiones como ingenieros civiles. Es un claro ejemplo de cómo la integración de herramientas de análisis avanzado con criterios de sostenibilidad puede transformar la práctica profesional y alinearla con los retos del siglo XXI.

Este audio os puede servir para entender el trabajo realizado.

Os dejo un vídeo que resume este trabajo.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Alcoy, ciudad de terremotos. A unos días del 400 aniversario de una de las mayores tragedias vividas.

Figura 1. Sismo del 3 de noviembre de 2020, con epicentro en Relleu

Hoy mismo nos hemos despertado con la noticia de un terremoto de magnitud 3,6 en la escala de Richter y epicentro en Relleu que se ha dejado notar en todo el norte de la provincia de Alicante, según el departamento de Sismología del Instituto Geográfico Nacional (Figura 1). Tuvo lugar a las 5:25 de la madrugada, durando aproximadamente los temblores cinco segundos. Han habido varias réplicas. Los temblores se han sentido en Alcoy y otros pueblos cercanos con movimiento de lámparas y camas, aunque sin daños personales o materiales de los que se tenga constancia. Este movimiento es el tercero percibido en la provincia de Alicante en poco más de 24 horas, tras los dos con epicentro en aguas del Mediterráneo, frente a Torrevieja (magnitud 2,6 en la escala Ritcher el domingo y 2,5 el del lunes).

Si observamos el mapa de sismicidad de la Península Ibérica y de las zonas próximas, comprobamos que el sur-sureste se encuentra en zona de alto riesgo (Figura 2). Nos encontramos en el borde entre la placa tectónica euroasiática y la africana, que se encuentran en colisión.

Figura 2. Sismicidad de la península ibérica y zonas próximas. http://www.ign.es/web/resources/sismologia/www/dir_images_terremotos/mapas_sismicidad/sismicidad.jpg

De hecho, el Instituto Geográfico Nacional recoge alguno de los episodios más graves habidos (Tabla 1), destacando con mucho el ocurrido el 1 de noviembre de 1755 al SW del Cabo San Vicente, que produjo un tsunami de casi 15 m de altura, con efecto a Europa occidental y norte de África. Fue de intensidad X, magnitud 8,5 y produjo unos 15000 muertos.

Tabla 1. Terremotos más importantes. https://www.ign.es/web/ign/portal/terremotos-importantes

Para aclarar algo más este tema, hay que distinguir entre la magnitud y la intensidad de un sismo. La magnitud mide la energía liberada, mientras la intensidad es una descripción cualitativa de los efectos, que ocurren en superficie. Si bien la magnitud se ha medido con las fórmulas originales de la escala Richter, hoy en día se hacen nuevos análisis de la magnitud basado en las ondas sísmicas. Os dejo a continuación la Figura 3, donde aparecen los terremotos más grandes acaecidos, con su magnitud y energía descargada equivalente.

Figura 3. Lista de terremotos de mayor magnitud. https://ecoexploratorio.org/amenazas-naturales/terremotos/magnitud-intensidad-y-aceleracion/#prettyPhoto/4/

¿Cuál es la razón del titular de este artículo? En primer lugar, por ser Alcoy mi pueblo natal. Pero, sobre todo, porque la memoria colectiva es muy corta. Quiero hacer referencia a algunos episodios que ocurrieron y que provocaron una verdadera calamidad no hace tampoco tanto tiempo.

El primer terremoto al que quiero referirme en Alcoy, tuvo lugar el 2 de diciembre de 1620, con una intensidad de VII-VIII, y unos días después, el 14 de diciembre, otro con una intensidad de V. El 26 de septiembre de 1793, el 2 de noviembre de 1819, el 8 de noviembre de 1882 y el 21 de enero de 1931 ocurrieron terremotos de intensidad V. Como vemos, terremotos de intensidad V o superior están bien documentados.

De todos los terremotos ocurridos en Alcoy, el del 1620 fue especialmente grave. Tanto fue así que los alcoyanos nombraron a San Mauro como patrono del pueblo. Las crónicas, recogidas en el Archivo Municipal de Alcoy, fueron escritas por Alonso García Molero, que la dedicó al corregidor de la ciudad de Granada, donde fue impreso en 1621.

¡Qué casualidad que quede menos de un mes del 400 aniversario de esta tragedia! Según cuenta en cronista Carbonell: “Poco después de las oraciones del Ave María, se sintió un terremoto tan estupendo que hoy referirse no puede ser, sin liquidarse el corazón por los ojos, pues es el mayor que ha visto el mundo después que murió Cristo Redentor nuestro”. Para medir la importancia de aquel terremoto, se pueden ver los daños que ocasionó a la arquitectura religiosa: se partió la Iglesia Parroquial por la mitad; el Convento de San Agustín fue arrasado en un instante (arcos de sillería destrozados, tres torres derrumbadas, el coro desplomado sobre tres religiosos…); el Monasterio de San Francisco se abrió como una granada, muriendo siete mujeres y un niño; víctimas por toda la ciudad, destacando las 22 de la Calle del Portal… Como en otras ocasiones, el desastre natural ocurrió de noche. Cuentan que las casas chocaban unas con otras al desplomarse; la gente salía de ellas con los niños en brazos y los ancianos al cuello; algunos con la mujer desmayada; los más rodaban por el suelo y los gritos de los sepultados y los bramidos de los irracionales, que no pudieron salir de los establos, se escuchaban por toda la ciudad.

Todo lo anterior nos lleva al «leit motiv» del presente artículo. Al igual que otras tragedias como riadas o inundaciones, los sismos son acontecimientos que ocurren y que requieren de una planificación previa y de estrategias técnicas que reduzcan los efectos de este tipo de acontecimientos. La teoría del «cisne negro» parece más actual que nunca.

 

Construcción sismo-resistente: las claves de los edificios chilenos

1625153¿Por qué los edificios chilenos modernos se comportan tan bien frente a los seísmos? La calidad de la tecnología antisísmica empleada en las edificaciones chilenas, que permitió que solo un 1 % sufriera daños estructurales durante el terremoto del año 2010, el sexto más grande del mundo, ha impulsado el interés de varios países de la región por estos dispositivos. En estructuras de hasta 18 pisos se utiliza el aislamiento sísmico, que permite interrumpir la estructura en su conexión a nivel del suelo y generar una interfaz para que el movimiento sísmico no se propague hacia la estructura. En cambio, en las construcciones de mayor altura se emplea la disipación de energía, que aprovecha el movimiento de la estructura para conectar entre dos puntos un sistema que disipe la energía producida por la deformación relativa de estos.

Os dejo esta entrevista de televisión a Juan Carlos de la Yera, decano de ingeniería de la Universidad Católica de Chile. Es muy ilustrativa e interesante.

También os paso un vídeo explicativo al respecto.

Efectos estructurales del megaterremoto de Chile

Terremoto de Chile de 2012. Wikipedia

Acabamos de conocer la noticia de un nuevo terremoto en el norte Chile a las 20.46 hora local del martes 1 de abril de 2014, de magnitud 8,2 en la escala de Richter y de larga duración. Esta noticia sirve de nexo para analizar el megaterremoto que tuvo lugar en el 2010. En efecto, el Terremoto de Chile de 2010 fue un sismo ocurrido a las 03:34:08 hora local (UTC-3), del sábado 27 de febrero , que alcanzó una magnitud de 8,8 MW. El epicentro se ubicó en el Mar chileno, frente a las localidades de Curanipey Cobquecura, cerca de 150 kilómetros al noroeste de Concepción y a 63 kilómetros al suroeste de Cauquenes, y a 30,1 kilómetros de profundidad bajo la corteza terrestre. El sismo tuvo una duración de 3 minutos 25 segundos, al menos en Santiago y en algunas zonas llegando a los 6 minutos. Fue percibido en gran parte del Cono Sur con diversas intensidades, en lugares como Buenos Aires y São Paulo por el oriente.  Las víctimas llegaron a un total de 525 fallecidos. Cerca de 500 mil viviendas están con daño severo y se estiman un total de 2 millones de damnificados, en la peor tragedia natural vivida en Chile desde 1960. El sismo es considerado como el segundo más fuerte en la historia del país y el sexto más fuerte registrado por la humanidad. Sólo es superado a nivel nacional por el cataclismo del terremoto de Valdivia de 1960, el de mayor intensidad registrado por el ser humano mediante sismómetros. El sismo chileno fue 31 veces más fuerte y liberó cerca de 178 veces más energía que el devastador terremoto de Haití ocurrido el mes anterior, y la energía liberada es cercana a 100.000 bombas atómicas como la liberada en Hiroshima en 1945.

Este terremoto causó graves daños en las edificaciones del centro del país.  Se ha visto en la práctica el funcionamiento sísmico del universo de edificaciones existentes en la zona, en todos sus sistemas de estructuración, materiales y usos. En lo que compete a la Ingeniería Estructural ha sido un tiempo de aprendizaje, de observación de los distintos tipos de fallas, del comportamiento variado de los materiales y también de los defectos constructivos. Ha generado la necesidad de confeccionar un catastro de las edificaciones, basándose en su daño estructural, estudiar edificios completamente colapsados, otros que han quedado con serios problemas estructurales y aquéllos que mediante reparaciones menores, podrán seguir siendo habitados. Las edificaciones que requieran ser demolidas, precisan la realización de proyectos de ingeniería, la disposición de importantes recursos económicos y técnicos, y medidas de seguridad extremas para salvaguardar a la población. Este escenario obliga a poner en ejercicio las diferentes técnicas de reparación, de acuerdo a los distintos materiales de construcción y sobre la base de las tecnologías existentes. El objetivo planteado ha sido darles nuevamente las características de resistencia que eviten su colapso ante nuevas solicitaciones sísmicas.

A continuación os paso un vídeo realizado por la Universidad Politécnica de Madrid donde Richard Leonardo Zapata Garrido explica este terremoto y sus consecuencias desde el punto de vista ingenieril. Espero que os guste y os sea útil.