Sobre las unidades legales de medida

En verde, los países que han adoptado el Sistema Internacional de Unidades como prioritario o único. Los tres únicos países que en su legislación no han adoptado el SI son Birmania, Liberia y Estados Unidos. Wikipedia

Cuando estudiaba ingeniería, en la década de los 80, nos acostumbraron nuestros profesores a utilizar las unidades habituales en ese momento como las toneladas, los kg/cm2, caballo de potencia, y otras parecidas. Era un sistema que, si bien distaba del sistema anglosajón de unidades (pie, pulgada, yarda, etc.), al menos estaba basado en el sistema métrico decimal. Se trataba del sistema MKS de unidades, basado en el metro, el kilogramo y el segundo. Siendo puristas, utilizábamos mal las unidades, confundiendo los kilogramos (que miden la masa) con las unidades que deberían medir la fuerza, y lo resolvíamos diciendo que se trataba de un “kilogramo-fuerza”, pero a los dos minutos, se nos olvidaba. También era habitual hablar de densidades de los materiales, cuando realmente queríamos referirnos a los pesos específicos de los mismos. Muchas horas pasamos como estudiantes de bachiller pasando unidades de un sistema a otro en las asignaturas de física.

De hecho, muchos ingenieros de cierta edad e incontables libros de texto continúan utilizando este sistema MKS, que si bien fue el precursor del actual Sistema Internacional de Unidades, conviene arrinconar de una vez por todas en todo tipo de texto o comunicación técnica. A veces es muy fácil, por ejemplo, el kilogramo-fuerza se puede sustituir fácilmente por el decaNewton (daN), eso sí, asumiendo cierto pequeño error al redondear la aceleración de la gravedad a 10 m/s2 en vez de los 9,81 m/s2. También hay que asumir el cambio de los kg/cm2 por los MPa (1 kg/cm2 ≈ 0,10 MPa = 0,10 N/mm2), en el caso de la resistencia característica del hormigón, sustituir las toneladas por los kN (1 t ≈ 10 kN), y sustituir los caballos de potencia CV por los kW (1 CV ≈ 0,735 kW). Así y todo, aún nos costará librarnos de las pulgadas cuando nos referimos, por ejemplo, a los diámetros de las tuberías. Todo se andará.

Como anécdota me comenta nuestro compañero Ángel Gil lo siguiente (ver la noticia en El País): La sonda Mars Climate fue construida por Lockheed Martin Astronautics, empresa americana que trabaja con el sistema imperial. Su sistema de navegación fue desarrollado por el Jet Propulsion Laboratory, que, como trabaja habitualmente con muchos equipos europeos, rusos, japoneses, etc, utiliza el sistema internacional. El resultado fue que la altitud sobre Marte se medía en km, pero se interpretaba como si fuesen millas. Cuando la nave pensaba que estaba abriendo el paracaídas a una altura en millas, en realidad era una altura 1,6 veces menor… Y se acabó estrellando.

En España el tema de las unidades de medida está legislado. Así el Real Decreto 2032/2009, de 30 de diciembre, establece las unidades legales de medida. Ningún estudiante, técnico o profesor debería ser ajeno a esta normativa. Por ser de gran importancia, os paso el texto íntegro para que lo uséis siempre.

Descargar (PDF, 307KB)

También podéis descargar la traducción al español de la 9ª edición del Sistema Internacional de Unidades (SI):

Descargar (PDF, 3.83MB)

¿Cómo se materializan y transfieren las unidades de medida?

¿Qué es el metro y dónde se encuentra? ¿Cómo puedo saber que lo que estoy midiendo es correcto? En un post anterior hicimos una pequeña incursión a los errores de medición. Vamos aquí a dar un somero repaso a las unidades de medida y a su materialización y transferencia. Empecemos, pues, con el Sistema Internacional de Unidades.

La existencia de varios sistemas de medida ha constituido un grave obstáculo para el comercio internacional. Durante el siglo XX se ha producido un acercamiento progresivo al sistema métrico por parte de los países que utilizaban el sistema inglés u otros. Fue en 1969 cuando se adoptó el Sistema Internacional de Unidades (SI), que es obligatorio en todo el territorio español, y que se basa en las Unidades Legales de Medida definidas por la ley 3/1985, de 18 de marzo, de Metrología.

El sistema SI consta de unidades básicas, suplementarias y derivadas, así como una terminología normalizada para los múltiplos y submúltiplos de todas las unidades de medida.

Se define el metro como la longitud del trayecto recorrido en el vacío por la luz durante un tiempo de 1/299 792 458 de segundo. Es una unidad básica cuyo símbolo es m.

Se define el kilogramo como la masa del prototipo internacional del kilogramo. Es la única unidad representada por un patrón material. Es una unidad básica cuyo símbolo es kg.

Se define el segundo como la duración de 9 192 631 770 periodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de Cesio 133. Es una magnitud básica cuyo símbolo es s.

Se define el amperio como la intensidad de una corriente que, manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de 1 metro, uno de otro, en el vacío, produciría entre estos conductores una fuerza igual a 2*10^7 newton por metro de longitud. Es una unidad básica cuyo símbolo es A.

Se define el kelvin como la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua. Es una unidad básica cuyo símbolo es K.

Se define el mol como la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 0,012 kilogramos de carbono 12. Es una unidad básica cuyo símbolo es mol.

Se define la candela como la intensidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540*10^12 hertz y cuya intensidad energética en dicha dirección es 1/683 watt por estereorradián. Es una unidad básica cuyo símbolo es cd.

Se define como radián al ángulo plano comprendido entre dos radios de un círculo que, sobre la circunferencia de dicho círculo, interceptan un arco de longitud igual a la del radio. Es una unidad suplementaria cuyo símbolo es rad.

Se define como estereorradián al ángulo sólido que, teniendo su vértice en el centro de una esfera, intercepta sobre la superficie de dicha esfera un área igual a la de un cuadrado que tenga por lado el radio de la esfera. Es una unidad suplementaria cuyo símbolo es sr.

Las unidades derivadas se definen de forma que sean coherentes con las unidades básicas y suplementarias; es decir, se definen por expresiones algebraicas bajo la forma de productos de potencias de las unidades SI básicas o suplementarias con un factor numérico igual a 1. Algunas de estas unidades derivadas reciben un nombre especial y un símbolo particular, tal y como se indica en la Tabla 1.

Magnitud Nombre

S

Frecuencia hertz

Hz

Fuerza newton

N

Presión, tensión pascal

P

Energía, trabajo, cantidad de calor joule

J

Potencia, flujo radiante watt

W

Cantidad de electricidad, carga eléctrica coulomb

C

Tensión eléctrica, potencial eléctrico volt

V

Resistencia eléctrica ohm

o

Conductancia eléctrica siemens

S

Capacidad eléctrica farad

F

Flujo magnético, flujo de inducción magnética weber

W

Inductancia henry

H

Flujo luminoso lumen

l

Luminancia becquerel

B

TABLA 1. Unidades SI derivadas con nombres y símbolos especiales.

Los múltiplos y submúltiplos del sistema SI se forman por medio de prefijos, que designan los factores numéricos decimales por los que se multiplica la unidad, y que figuran en la Tabla 2:

Factor

Prefijo

Símbolo

10^24

yotta

Y

10^21

zetta

Z

10^18

exa

E

10^15

peta

P

10^12

tera

T

10^9

giga

G

10^6

mega

M

10^3

kilo

k

10^2

hecto*

h

10^1

deca*

da

10^-1

deci*

d

10^-2

centi*

c

10^-3

mili

m

10^-6

micro

m

10^-9

nano

n

10^-12

pico

p

10^-15

femto

f

10^-18

atto

a

10^-21

zepto

z

10^-24

yocto

y

* Su uso es desaconsejado

TABLA 2. Múltiplos y submúltiplos del sistema SI.

La materialización de las unidades y su transferencia.

La materialización de las definiciones de las unidades del Sistema Internacional en elementos físicos denominados patrones las realizan físicamente los llamados laboratorios primarios. Estos patrones primarios tienen un valor que convencionalmente se considera verdadero y se obtiene por intercomparaciones mutuas entre los laboratorios, coordinados a través de organismos internacionales como la Agencia Internacional de Pesas y Medidas (BIPM).

A partir de los patrones primarios, se calibran otros patrones denominados secundarios o de transferencia, utilizados por los laboratorios de metrología acreditados para realizar calibraciones y emitir los correspondientes certificados de calibración. Con estos patrones de transferencia se calibran los llamados patrones de trabajo, cuya misión es la de calibrar los instrumentos y equipos de medición usados para controlar los procesos de fabricación y los productos. En cada escalón, la incertidumbre va incrementándose, debiéndose reducir en lo posible dichos escalones.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.