
Resumen--El artículo se ocupa de la optimización económica 

de los tableros de los pasos superiores de carreteras formados  

por una losa de hormigón ejecutada in situ y dos vigas artesa 

prefabricadas de hormigón pretensado autocompactable. Se 

comprueba la eficacia de las distintas metaheurísticas 

aplicadas en la optimización: “descent local search” (DLS), 

“simulated annealing” (SA), “threshold accepting” (TA), 

“genetic algoritms” (GA) y “memetic algorithms” (MA). Los 

cálculos de las tensiones y de sus envolventes, son 

programados en lenguaje fortran directamente por los 

autores. Los algoritmos de optimización heurística se aplican 

a un tablero de 35 m de  luz y 12 m de ancho. Los parámetros 

que definen la forma de la sección de la viga se adaptan a los  

moldes de una instalación de prefabricados. El ejemplo que se 

analiza consta de 59 variables discretas. El módulo de la 

evaluación incluye los estados límite último y de servicio que 

se aplican comúnmente para estas estructuras: flexión, 

cortante, torsor, fisuración, flechas, etc. Los algoritmos SA y 

TA se han calibrado previamente a partir del DLS, y el MA a 

partir del GA y del SA. Cada heurística se procesa nueve 

veces, obteniéndose información estadística sobre el valor 

mínimo, el medio y las desviaciones. Se realiza un análisis del 

rendimiento de las distintas heurísticas, basado en un estudio 

de las soluciones Pareto-óptimas entre tiempo de ejecución y 

rendimiento. Los mejores resultados se obtienen para el SA y 

el TA, siendo el coste mínimo de 108008 €, correspondiente al 

SA. Finalmente, entre las principales conclusiones de este 

estudio, destaca que las soluciones y los tiempos de proceso 

computacional son tales, que estos métodos se pueden aplicar 

de un modo práctico a casos reales, y que el conocimiento 

derivado del uso de estos algoritmos permiten recomendar 

rangos de valores para emplearlos en el diseño optimizado de 

estas estructuras y en su aplicación para los 

predimensionados de las variables. 

Palabras clave—Optimización, metaheurística, puentes, pasos 

superiores, diseño de estructuras. 

I. INTRODUCCIÓN

La inteligencia artificial, desde sus comienzos 
hacia mediados de 1950, se ha ido utilizando 
progresivamente como herramienta resolutiva en 
distintos ámbitos técnicos. Una de sus aplicaciones 
se ha dirigido hacia la optimización del diseño de 
estructuras bajo diferentes objetivos, tales como la 
reducción del coste económico en la fase de 
construcción, la disminución de la emisión de gases 
de efecto invernadero durante su ejecución o vida 
útil, el aumento de la seguridad, etc. Para diseñar 
una estructura se selecciona un grupo de variables 
conforme a unos condicionantes estructurales de 
contorno. Las variables del diseño incluyen entre 
                                                           
1

ICITECH. Universitat Politècnica de València, Camino de Vera 
s/n 46022 Valencia. E-mail: jvmartia@upv.es 
2 ICITECH. Universitat Politècnica de València, Camino de Vera 
s/n 46022 Valencia. E-mail: vyepesp@upv.es  
3 ICITECH. Universitat Politècnica de València, Camino de Vera 
s/n 46022 Valencia. E-mail: tagarse@cam.upv.es  

otros, la tipología de los distintos materiales, las 
dimensiones de las secciones  transversales y los 
refuerzos de acero. A pesar del alto potencial y los 
buenos resultados obtenidos con la aplicación de la 
inteligencia artificial en la optimización económica, 
en el presente, el diseño de estructuras de hormigón 
está muy condicionado por la experiencia de los 
ingenieros calculistas. El diseño tradicional de 
estructuras de hormigón se fundamenta en el 
conocimiento y experiencia sobre la materia de los 
proyectistas, que tienen como objetivo la obtención 
de estructuras seguras y que a la vez cumplan los 
condicionantes de durabilidad a lo largo de su vida 
útil [1]. Hay que añadir que el ingeniero proyectista, 
que inicialmente diseña y predimensiona las 
distintas partes y secciones de la estructura, a 
continuación, mediante la utilización de programas 
informáticos prueba la bonanza del diseño inicial, y 
lo ajusta en los lugares críticos que puedan 
presentar. Si los valores geométricos o la resistencia 
de los materiales son insuficientes, la estructura se 
redefine sobre la base del ensayo de prueba y error. 
Tal procedimiento conduce a diseños seguros, pero 
en cambio, la economía de las estructuras de 
hormigón queda muy condicionada a la experiencia 
del diseñador calculista.     

Los métodos metaheurísticos de optimización 
pretenden minimizar una función objetivo, como 
pueda ser en nuestro caso, el coste de un paso 
superior de carreteras. Su aplicación a las 
estructuras de hormigón ha sido muy reducida 
comparada con las desarrolladas para las estructuras 
de acero [2]. Nuestro grupo de investigación ha 
presentado últimamente trabajos de optimización de 
estructuras de hormigón armado y pretensado con 
distintas técnicas heurísticas [3-10]. De un modo 
general, los métodos de optimización estructural se 
pueden clasificar en dos amplios grupos: métodos 
exactos y métodos heurísticos. Los métodos exactos 
se corresponden con el sistema tradicional. Se basan 
en el cálculo de soluciones óptimas siguiendo las 
técnicas iterativas de la programación lineal [11,12]. 
El segundo grupo principal es el de los métodos 
metaheurísticos, cuyo reciente desarrollo va ligado a 
la evolución de los procedimientos de la inteligencia 
artificial. Este grupo incluye un amplio número de 
algoritmos de búsqueda [13-16], tales como 
búsqueda por gradiente (DLS), algoritmos genéticos 
(GA), meméticos (MA), recocido simulado (SA), 
búsqueda tabú (TS), aceptación por umbrales (TA), 
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g) La optimización tiende a dimensiones cortas 
de las alas superiores de la viga. 

VI. CONCLUSIONES

Las conclusiones resumidas son las siguientes: 
a) Se han aplicado cinco metaheurísticas con sus 

variantes –DLS, SA, TA, GA y MA-, para el diseño 
automatizado y optimizado de tableros de pasos 
superiores de carreteras con vigas artesa 
pretensadas, siendo las más eficaces el SA y el TA. 
Los tiempos de proceso para estas dos últimas son 
suficientemente aceptables como para poder 
utilizarse de un modo práctico en casos reales. 

b) La heurística que mejores resultados ha 
obtenido se corresponde con el algoritmo SA, con 
cadenas de Markov de 2500 iteraciones y 
coeficiente de enfriamiento de 0.95. Su tiempo de 
proceso es de unas cinco horas con el procesador 
utilizado en este trabajo. 

c) El conocimiento derivado del uso de las 
metaheurísticas permiten recomendar rangos de 
valores para emplearlos en el diseño optimizado de 
estas estructuras y en su aplicación para los 
predimensionados de las variables. 
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