
Resumen—Este estudio convierte el diseño estructural en una 

optimización de variables discretas. Se propone un algoritmo 

híbrido de enjambre de luciérnagas para buscar soluciones 

con menores emisiones totales y anuales. El algoritmo 

combina la búsqueda colectiva de la optimización de 

enjambre luciérnagas “glowworm swarm optimization“(GSO) 

y la capacidad de búsqueda local del umbral de aceptación 

“threshold accepting” (TA). La estructura propuesta es una 

viga de hormigón en doble T biapoyada definida por 20 

variables. Se estudia la resistencia del hormigón desde 30MPa 

hasta 100MPa. Esta comunicación  propone un método para 

calibrar los parámetros del algoritmo con independencia de 

la función objetivo y del tamaño del enjambre. Los resultados 

muestran que TAGSO consigue  diseños de vigas que emiten 

un 25% menos de CO2. La optimización de las emisiones 

anuales reduce la cantidad de CO2 al año en un 61% con un 

incremento total de las emisiones de CO2 del 9%. 

Palabras clave-- Enjambre de luciérnagas, algoritmo híbrido, 

hormigón de alta resistencia, variables discretas. 

 

I. INTRODUCCIÓN 

En ingeniería estructural, el objetivo es lograr 
una estructura segura y económica. Además de estos 
objetivos, el impacto ambiental y la durabilidad son 
cada vez más frecuentes. Las restricciones de 
resistencia y condiciones en servicio definen un 
espacio de soluciones en el que los expertos son los 
únicos capaces de encontrar la mejor solución. La 
geometría de la sección transversal, la resistencia 
del hormigón, y la cantidad y distribución del acero 
son las variables de diseño. Para llegar a la mejor 
solución se necesita un proceso de prueba y error en 
el que se va reduciendo el consumo de material, y 
por consiguiente el coste. Sin embargo, las técnicas 
de optimización heurística han demostrado su 
eficacia para encontrar la mejor solución dentro del 
espacio factible.  

Nuestro grupo de investigación ha utilizado el 
recocido simulado, el umbral de aceptación, la 
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colonia de hormigas y los algoritmos genéticos para 
reducir el coste de muros de hormigón armado (HA) 
[1], marcos de paso de carretera [2], bóvedas de 
carretera [3], pilas de puentes [4], pórticos de 
edificación [5], puentes de carretera prefabricados 
[6, 7]. Paya-Zaforteza et al. [8] y Yepes et al. [9] 
ampliaron el estudio económico a la optimización 
de las emisiones de CO2. Los resultados mostraron 
que las soluciones ecológicas son también buenas 
soluciones en términos de coste, ya que ambos 
objetivos buscan la minimización del material. 
Camp y Assadollahi [10] estudiaron los diseños de 
zapatas de hormigón armado para ambos objetivos. 
Ellos encontraron que ambos son altamente 
sensibles a los cambios en las cargas y condiciones 
geotécnicas. Park et al. [11] propuso el uso de 
técnicas de optimización para estudiar las emisiones 
y el coste de columnas de hormigón armado, 
dependiendo del tipo de acero y la resistencia del 
hormigón. García-Segura et al. [12] utilizaron un 
algoritmo híbrido de enjambre de luciérnagas y 
recocido simulado para optimizar vigas en doble T 
de hormigón autocompactante. Este estudio propone 
un algoritmo híbrido de enjambre de luciérnagas y 
aceptación por umbrales para minimizar la huella de 
carbono de vigas en doble T de hormigón de alta 
resistencia. 

El hormigón de alta resistencia reduce las 
dimensiones de la sección transversal y, por lo tanto, 
el consumo de material. Sin embargo, para su 
producción se necesita más cantidad de cemento. El 
cemento es un material con una elevada huella de 
carbono. La producción de cemento Portland es la 
responsable de aproximadamente el 76% de las 
emisiones de producción y construcción de una 
columna de hormigón armado [13]. Asimismo, otros 
estudios han abordado el uso de hormigón de alta 
resistencia desde un punto de vista ambiental [14]. 
Este estudio, además, tiene en cuenta la 
carbonatación y durabilidad del hormigón de alta 
resistencia.  

La carbonatación reduce la alcalinidad del 
hormigón. Consecuentemente, se acelera la 
corrosión del acero y se reduce la vida útil de la 
estructura. Sin embargo, la carbonatación durante la 
etapa de uso puede reducir las emisiones totales en 
un 22% [13]. Si no se tiene en cuenta la captura de 
carbono, las tasas de emisión pueden estar 
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del diseño de la mezcla, incluyendo la producción 
del material, el transporte y la colocación. Las 
emisiones se obtuvieron de la base de datos BEDEC 
[24], salvo la emisión unitaria del plastificante [25] 
y del humo de sílice, que se considera que no tienen 
emisiones de producción al ser un residuo industrial 
[12]. 

La mayoría de los casos de deterioro del 
hormigón son debido a la corrosión del acero por 
carbonatación o cloruros [26], prevaleciendo la 
carbonatación en ambientes urbanos e industriales 
en los que hay concentraciones de CO2 elevadas 
[27]. La EHE-08 señala la carbonatación como el 
principal proceso de deterioro del hormigón cuando 
éste está expuesto a un ambiente de exposición 
normal (corrosión de origen diferente de los 
cloruros) [28]. La vida útil t se evalúa de acuerdo a 
las condiciones ambientales. Este valor se utiliza 
para el cálculo de la emisión anual (véase la 
expresión (2)). Al mismo tiempo, la carbonatación 
absorbe CO2 (CCO2) y por lo tanto, esta captura se 
deduce de las emisiones. 

La Instrucción EHE-08 [28] propone la 
expresión (4) para evaluar la vida útil de la 
estructura basada en el modelo Tuutti [29].  

cv

r

k

r
t

80
2

                                                   (4) 

donde: t son los años de vida útil; r es el 
recubrimiento del hormigón (mm); k es el 
coeficiente de  carbonatación [28] (véase la Tabla I); 
ø es el diámetro de la barra (mm), y vc es la 
velocidad de corrosión (2 m/año). La vida útil de la 
estructura se modeliza como la suma de dos fases. 
Durante la primera fase, la carbonatación penetra en 
el recubrimiento del hormigón. La segunda fase 
comienza cuando el frente llega a la superficie del 
acero, y termina cuando el nivel de degradación 
llega a un límite por encima del cual, la 
consecuencias de la corrosión ya no pueden ser 
toleradas [28,29]. El aumento de la vida útil reduce 
las emisiones a largo plazo, en tanto en cuanto se 
reduce la emisión anual. Sin embargo, hay que tener 
en cuenta que las infraestructuras son a menudo 
reemplazadas por razones funcionales. Por lo tanto, 
este estudio limita la vida útil máxima a 300 años. 

La captura de CO2 se evalúa según el estudio de 
García-Segura et al. [13]. La expresión (5) se basa 
en la primera ley de difusión de Fick. Esta expresión 
ha sido utilizada por numerosos autores [30-33] para 
valorar la absorción de CO2 del hormigón.  La Tabla 
I muestra la cantidad de cemento Portland por metro 
cúbico de hormigón (c). Se considera que la 
cantidad CaO que contiene el cemento Portland 
(CaO) es 0,65, la proporción de óxido de calcio que 
puede ser carbonatada ( ) es 0,75, y la relación entre 
los pesos moleculares (M) es 0,79 [13, 33]. La 
superficie de hormigón expuesta A depende de la 
geometría de la solución. 

 

MACaOctkCCO2
                            (5) 

 
TABLA I  

EMISIONES UNITARIAS Y PROPIEDADES DEL 

HORMIGÓN 
 

Medición 

unitaria 

Emisión 

(kg CO2) 

k 

(mm/año0.5) 

Cemento 

(kg/m3)

HA-30 (m3) 259,61 3,71 280 

HA-35 (m3) 277,61 3,01 300 

HA-40 (m3) 295,61 2,50 320 

HA-45 (m3) 313,61 2,11 350 

HA-50 (m3) 331,61 1,81 400 

HA-55 (m3) 349,61 1,57 457 

HA-60 (m3) 367,61 1,38 485 

HA-70 (m3) 403,61 1,09 493 

HA-80 (m3) 439,61 0,89 497 

HA-90 (m3) 475,61 0,74 517 

HA-100 (m3) 511,61 0,63 545 

Acero 
B500SD (kg) 

3,03   

Encofrado 
(m2) 

2,08   

Colocación de 
la viga (m) 

39,43   

 

B. Restricciones 

Las restricciones estructurales comprueban los 
Estados Límite Últimos (ELU) y Estados Límite de 
Servicio (ELS) en base a la Instrucción de 
Hormigón Estructural EHE-08 [28]. Las 
limitaciones de ELU controlan la flexión, el cortante 
y la rasante. Referente al ELS, se comprueba que la 
abertura de fisura no supera el límite fijado por las 
condiciones de durabilidad y la flecha total no es 
superior a 1/250 de la luz de la viga. Se comprueban 
también las restricciones geométricas y 
constructivas. En cuanto a durabilidad, se requiere 
una vida útil mínima de 100 años 

III. ALGORITMO DE OPTIMIZACIÓN 

Se propone el algoritmo híbrido (TAGSO) que 
combina el enjambre luciérnagas y el umbral de 
aceptación. GSO fue propuesto por Krishnanand y 
Ghose para encontrar múltiples soluciones óptimas 
en funciones continuas [34]. TA, propuesto por 
Dueck y Scheuer [35], se caracteriza por aceptar 
soluciones peores siempre y cuando el incremento 
sea menor que un valor umbral.  

El método propuesto comienza con la 
generación de una población de n luciérnagas o 
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