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Abstract: The design of bridges must balance sustainability and construction simplicity. A
game-theory-based optimization method was applied in this research to find a sustainable
steel–concrete composite bridge design. The sustainability was evaluated through cost
and environmental and social impact using the Life Cycle Assessment method. The
optimization process considered four criteria simultaneously, using a discrete version of
the SCA algorithm and a transfer function for discretization. The preferred solutions were
selected using the Minkowski distances approach. Results showed a decrease in slab
reinforcement and an increase in the amount of steel in the cross-section, leading to only
an 8.2‰ increase in cost compared to similar studies. Regarding the cross-section, the
geometry obtained considers cells in the upper and lower parts of the webs to improve
the bending resistance. The proposed method allows for the simultaneous optimization of
multiple criteria and provides a sustainable yet simple bridge design solution.

Keywords: game theory; multi-objective optimization; steel–concrete composite structures;
bridges; metaheuristics; sustainability
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1. Introduction
Engineering problems involve selecting the optimal solution based on various criteria,

such as cost, environmental and social impact, and construction simplicity. Balancing these
criteria adds complexity to the decision-making process, requiring the use of techniques
and tools to achieve practical solutions [1,2]. To reach a compromise solution that consid-
ers the decision-making process and educates stakeholders, multi-objective optimization
(MOO) techniques are applied [3–5]. MOO techniques allow for balancing all criteria and
considering the relative importance of each in the decision-making process.

The civil engineering industry is known for considering multiple criteria in finding
the best solution. Projects often have a significant economic impact and concerns regarding
their environmental and social impact, given the large scale of these projects. One example
is structure design problems, where researchers have been using multi-objective strategies
to find optimal solutions [6]. Ghasemof et al. [7] have applied multi-objective optimization
(MOO) to achieve a performance-based design for buildings. The same method has also
been used to optimize seismic performance in structures, as demonstrated in the study by
Rastegaran et al. [8], resulting in effective risk-based designs.
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Furthermore, several other studies have focused on optimizing the geometric design of
various structural components, including wind turbine foundations [9], reinforced concrete
(RF) frames in bridges [10], and cable-stayed bridge tendons [11], among others. In the
case of cable-stayed bridges, the optimization criteria considered include the structure’s
cost, sustainability, ease of construction, and safety. These studies often incorporate CO2

emissions as a criterion for sustainability, resulting in a design that optimizes cost and
environmental impact.

Recent research in steel–concrete composite structures has shown that a single-
objective optimization (SOO) approach, using either CO2 emissions or embodied energy as
the criteria, may not necessarily lead to an optimal cost solution. This is because increasing
the yield stress of structural steel does not affect its emissions or embodied energy [12,13].

Current studies in steel–concrete composite bridge (SCCB) optimization need to gain
comprehensive knowledge from various fields. One limitation is using only one indicator
for sustainability, such as CO2 emissions or embodied energy [12,13]. More advanced
methods, such as the structure’s Life Cycle Assessment (LCA), can provide a more compre-
hensive evaluation of the environmental impact profile. Recent studies have highlighted
the importance of integrating LCA in the design and optimization of infrastructure projects.
LCA evaluates the environmental impacts associated with all stages of a product’s life,
from raw material extraction to disposal. Despite advancements, challenges such as
monetizing environmental impacts and handling economic data volatility remain. These
challenges present opportunities for developing more comprehensive approaches [14]. Ad-
ditionally, existing studies have only considered sustainability’s economic and environmen-
tal aspects, ignoring the social impact. Moreover, the optimization of SCCB has primarily
been performed using SOO criteria, as demonstrated in the study by Briseghella [15] and
noted in review articles [16].

Multi-objective optimization has proven to be a powerful tool in the sustainable design
of civil engineering structures. Recent studies have explored its application to pedestrian
and vehicular bridges, balancing criteria such as cost, environmental impact, and structural
performance [17,18]. Additionally, the Sine Cosine Algorithm (SCA) and its variants have
gained popularity for handling complex problems in structural optimization [19–21]. These
methodologies highlight the importance of integrated approaches that consider multiple
objectives in the design of steel–concrete composite bridges.

This research presents an MOO strategy, utilizing a game theory approach, for design-
ing a three-span steel–concrete composite bridge (SCCB) with a box-girder cross-section.
The design includes adding four cells at the flange-web contact zone to reduce the distance
between stiffened zones and minimize material usage. Game theory is chosen for multi-
objective optimization due to its ability to handle multiple conflicting objectives effectively.
By transforming the optimization problem into a strategic game, game theory allows for
the identification of optimal strategies that balance different criteria. This approach is
particularly suitable for complex engineering problems, such as bridge design, where
economic, environmental, and social impacts must be considered simultaneously [22,23].

This research aims to improve the knowledge and understanding of SCCB design by
proposing an MOO strategy that balances sustainability and construction ease.

2. Multi-Objective Optimization
As a general definition, a multi-objective minimization problem can be defined as

choosing a solution vector X⃗ with n variables that minimizes the k objective function chosen
subject to m certain constraints as defined in Equations (1)–(3):

X⃗ = x1, x2, . . . , xn (1)
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min( fi(X⃗)) = min( f1(X⃗), f2(X⃗), . . . , fk(X⃗)) (2)

gj(X⃗) ≥ 1 (3)

In this study, the optimization problem consists of an SCCB deck. The structure
has three spans, of which the lateral ones have a length of 60 m while the central span
is 100 m. The structural optimization problem variables, parameters, and constraints
have been defined in Section 2.3. The objective functions chosen for the MOO have been
the three pillars of sustainability, represented by the cost (economy), the environmental
(environment), and the social (society) LCA, and the constructive ease of the RC slabs. All
the objective functions have been defined in Section 2.2. A game-theory-based procedure
has been selected to reach the optimal compromise solutions. This method has been
described in Section 2.1. Figure 1 summarizes the complete MOO process carried out in
this research.
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Figure 1. Game theory optimization process flowchart.

The flowchart in Figure 1 illustrates the step-by-step process of the game-theory-based
multi-objective optimization (MOO) methodology applied in this study. The process be-
gins with the initialization of a random population of potential solutions, which represent
different design alternatives for the steel–concrete composite bridge (SCCB). Each solu-
tion’s fitness is evaluated based on four objective functions: cost, environmental life cycle
assessment (ELCA), social life cycle assessment (SLCA), and constructability (CS).

To ensure the feasibility of the solutions, the constraints are checked, including struc-
tural safety and serviceability limits. If a solution does not meet the constraints, a penalty
is applied to its fitness value using the normalized terms Rd(X) and Ed(X), as defined in
Equation (15). The objective function values are then normalized, and the game theory
approach is applied to balance the multiple objectives.

Next, a weighted objective function is formulated, where entropy theory is used to
assign weights to each criterion. This combined function calculates a super-criterion (S),
which maximizes the deviation of each objective from its worst value. The optimization al-
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gorithm iteratively updates the population, using the Algorithm (SCA) with a discretization
technique, to improve the solutions.

The process continues until the convergence criteria are met, such as a maximum
number of iterations or stabilization of the objective function values. Finally, the Minkowski
distance metrics are used to select the best compromise solution from the Pareto-optimal
set, ensuring a balance among sustainability, cost-effectiveness, and constructability.

2.1. Game Theory Approach

Game theory is a brand of applied mathematics that allows studying the interaction
in formalized incentive structures. The name given to this structure corresponds to games.
The players represent the objective functions fi(X⃗) in this problem. Players can change
problem variables vector X⃗ for changing the value of the objective function. The goal of
every player is to minimize the objective function. However, the value of every player’s
objective function can also be influenced by the decisions of other players regarding the
variables vector.

Considering the above, it can be concluded that a game theory problem encompasses
interest among players. Thus, it gives two possibilities for problem resolution. In the first
one, players are guided by selfishness and, consequently, try to decrease their objective
function without considering the consequences for the rest of the players. This, in game
theory, is named a non-cooperative game. The point where the players cannot modify
the solution unilaterally to improve its corresponding criterion is called the Nash equilib-
rium [24]. This equilibrium can be mathematically defined as given in Equation (4) for
n design variables and k criteria. This Nash equilibrium can be more than one point in
the solution space and, in this case, fi(X⃗) have different values for each Nash equilibrium
point. If this situation is produced, the player that declares the moving of first place forces
the others to move to the equilibrium point:

f1(x∗1 , . . . , x∗n) ≤ f1(x1, x2, . . . , x∗n)

f2(x∗1 , . . . , x∗n) ≤ f1(x∗1 , x2, . . . , x∗n)
...

fk(x∗1 , . . . , x∗n) ≤ fk(x∗1 , x∗2 . . . , xn)

(4)

The other option arises in which the players cooperate to find a better solution than
the one reached in the Nash equilibrium. If the deciders take this strategy, this is defined
as a cooperative game. As a consequence, this provides a space for solutions. In order
to allow the reduction of solutions, the Pareto-optimal concept can be applied. A multi-
objective Pareto-optimal feasible solution Y⃗ accomplish that no other another feasible
solution Z⃗ exists where fi(Y⃗) ≤ fi(Z⃗) for i = 1, 2, . . . , k with almost one j that accomplishes
f j(Y⃗) < fi(Z⃗) [25]. The next step in the procedure is to choose the solution vector contained
in the Pareto-optimal set that represents a compromise solution that benefits all players or
at least is acceptable. This is made by defining specific negotiation rules between players
that allow them to formulate a super-criterion. This super-criterion allows reformulating
the MOO problem into an SOO that allows a compromise solution between players.

Game-Theory-Based Optimization Strategy

In this work, a game-theory-based MOO has been applied to SCCB structural opti-
mization. The methodology followed is the one proposed by Annamdas and Rao [22].
This method uses a cooperative game strategy in which the super-criterion maximizes the
deviation between every objective function and its worst value. It should be noted that the
method does not need the criteria introduced to be contrary to each other. It has shown
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good results in other engineering problems, as described in Annamdas and Rao [22], and
consists of the following steps:

1. Minimize and maximize of the kobjectives to get the best fi(X⃗∗
i ) and the worst

Fwi value.
2. Normalize the current value of the kobjective function fi(X⃗) with respect to the best

and worst value by means of Equation (5):

fni(X⃗) =
fi(X⃗)− fi(X⃗∗

i )

Fwi − fi(X⃗∗
i )

(5)

This normalization avoids favoring any criteria by making the values of all criteria lie
between zero and one when minimizing the objective function defined in (6).

3. Minimize an objective function F(Y⃗), defined in (6), that takes into account the com-
promise solution rules:

F(Y⃗) = FC − S (6)

where FC, defined in (7), represents a weighted objective function that includes the
Pareto-optimal set:

FC = C1 fn1(X⃗) + . . . + Ck−1 fn(k−1)(X⃗) + (1 − C1 − . . . − Ck−1) fnk(X⃗) (7)

where 0 ≤ Ci ≤ 1 and ∑n
i=1 Ci = 1

The super-criterion S, defined in (8), maximizes the deviation between every objective
function and its worst:

S =
n

∏
i=1

[1 − fni(X⃗)] (8)

The method proposed by Annamdas and Rao proposes to minimize FC for all possible
combinations of weights Ci. This study has modified this method, assigning those weights
to the values obtained through the entropy theory [26]. These weight values have been
obtained by comparing the individuals generated in each population by the selected
metaheuristic. The algorithm chosen is a discrete version of the SCA, which has been
previously applied to this optimization problem considering different criteria as SOO [18].
This algorithm and its discretization technique have been defined in Section 2.4.

2.2. Objective Functions

The problem chosen for the MOO consists of reaching the optimum design of an
SCCB involving four criteria as objective functions. Equations (9)–(12) assess the economic
cost, the constructive simplicity of the slab, and the environmental and social life cycle
assessment of the structure, respectively. The objective cost function multiplies the unit
cost of every activity needed for constructing the bridge by its measurement. Table 1
includes all the construction units and their corresponding costs obtained from the BEDEC
database [27]. In Equation (9), pi corresponds with the price of every construction unit and
mi with its measurement:

C(X⃗) =
n

∑
i=1

pi · mi(x⃗) (9)

The following objective function, defined in Equation (10) considers the construction’s
simplicity of the RC slabs of the bridge. In this expression, nlayers and nbars correspond
to the number of reinforcement layers and bars. This criterion considers that a lower
amount of both bars and reinforcement layers is simpler to carry out during construction.
The number of bars has been considered in the support sections of the bridge. In this
section, the bridge is subjected to negative bending moments and, consequently, traction
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in the upper slab. Furthermore, the structural resistant model defined in EN 1994-1-1 [28]
only considers reinforcement to obtain the ultimate moment of the section, which favors
the placement of a more significant amount of reinforcement.

CS(X⃗) = nlayers · nbars (10)

The LCA’s objective is to assess the structure’s environmental (ELCA) and social
impact (SLCA), considering the processes needed, from the extraction of the raw material
to the demolition of the structure and its transport to the landfill site. In Equations (11)
and (12), i represent every life cycle stage, elcaj and slcaj the environmental and social
impact of every process needed in every stage, respectively, and mj the measurement of
every process. The processes considered and their corresponding environmental and social
impact are defined in Table 2. The LCA method has been described in detail in Section 2.2.

ELCA(X⃗) =
n

∑
i=1

p

∑
j=1

elcaj · mj(x⃗) (11)

SLCA(X⃗) =
n

∑
i=1

p

∑
j=1

slcaj · mj(x⃗) (12)

Table 1. Cost values of every construction unit for SCCB [27].

Construction Unit Unit Cost (EUR)

Ccncrete C25/30 m3 88.86
Concrete C30/37 m3 97.80
Concrete C35/45 m3 101.03
Concrete C40/50 m3 104.08
Precast pre-slab m3 27.10
Reinforcement steel B400S kg 1.40
Reinforcement steel B500S kg 1.42
Rolled steel S275 kg 1.72
Rolled steel S355 kg 1.85
Rolled steel S460 kg 2.01
Shear-connector steel kg 1.70

Table 2. Ecoinvent processes LCA environmental and social impact values.

Process Unit elcai (Points) slcai (mrh)

concrete production 25 MPa m3 2.037 × 101 1.254 × 105

concrete production 30 MPa m3 2.631 × 101 1.668 × 105

concrete production 35 MPa m3 2.478 × 101 1.554 × 105

concrete production 40 MPa m3 2.585 × 101 1.623 × 105

steel production 71% of recycling rate kg 1.523 × 101 1.941 × 103

steel production 98% of recycling rate kg 1.036 × 101 2.067 × 103

transport, freight, lorry 16–32 metric ton, EURO6 t·km 2.502 × 102 4.116 × 101

transport, freight, lorry 3.5–7.5 metric ton, EURO6 t·km 7.755 × 102 1.655 × 102

welding, arc, steel m 2.350 × 102 2.535 × 102

welding, gas, steel m 2.303 × 102 2.429 × 102

diesel, burned in building machine MJ 1.361 × 102 8.764 × 100

carbon dioxide kg 4.369 × 102 0.000 × 100

rock crushing kg 7.223 × 105 8.305 × 101
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Life Cycle Assessment Method

The life cycle assessment is the evaluation of the contribution of the processes of
one activity or product to its global impact. Together, these procedures cover all the
steps needed to complete this product or activity. Depending on the scope of the LCA,
the processes considered begin with the raw material extraction and finish in the different
stages of the product’s service life. In the case of bridges, the regulation that defines the
procedure to carry out the environmental LCA is the ISO 14040:2006 [29]. In addition,
the guide to follow to assess the social impact is the Guidelines for Social Life Cycle Assessment
of Products [30]. To model the structure’s life cycle, it is necessary to obtain the impacts
from databases and choose a life cycle impact assessment (LCIA) method. The method
chosen for this research is the ReCiPe 2008 method [31] for ELCA and the social impacts
weighting method (SIWM) for SLCA. The databases contain information about the impact
of processes. In this research, ecoinvent v3.7.1. [32] and soca v2 [33] have been chosen
for ELCA and SLCA, respectively. These databases are frequently upgraded and are very
reliable for the scientific community [34]. Furthermore, the soca database allows associating
ecoinvent processes with the PSILCA [35] database social impacts, being a useful tool for
scientists [36].

In order to assess the impact of the SCCB, four stages have been defined for obtaining
the full impact of the bridge. These phases correspond to manufacturing, construction, use,
maintenance, and end of life, which are similar to those defined in previous bridge LCA
studies [36].

Manufacturing encompasses transforming the raw material into the products needed
for construction and their transportation to the building site, considering the wastes gener-
ated during these activities. In the case of steel products production, recycled steel radically
impacts the bridge global environmental impact in SCCB [36]. It is critical to distinguish
between structural and rebar steel since, according to some studies, the reinforcement
steel recycling percentage is 71%. In contrast, the structural steel recycling ratio is 98% in
developed countries such as in the EU [37].

Construction includes the actions required to build the bridge, considering the equip-
ment, depending on the building style and location of the structure, which is all included
in the construction phase. Formwork, scaffolding, vibrators, and concrete pouring must
be considered. Additionally, the procedures for welding the steel sections that were over-
looked during the manufacturing phase must be established for steel and steel–concrete
composite bridges. The diesel consumption of the machinery, which is based on informa-
tion from the manufacturer, the literature, or other sources, is included in the LCA model
for modeling construction activities.

All the tasks required throughout the structure’s lifetime are included in the use and
maintenance stage. Research has found that concrete can be carbonated to fix CO2 [38,39].
According to the study of García-Segura et al. [40], the expression of concrete carbonation
is represented in Equation (13):

CO2 f ixed (kg) = 0.383 ·
k
(

mm√
year

)
·
√

t(year)

1000
· A(m2) · C

(
kg
m3

)
· k(%) (13)

where t is the service life, k is the carbonation coefficient, A is the concrete’s exposed area,
C is the amount of cement contained in one concrete cubic meter, and k is the amount of
clinker in the cement.

The dismantling of the structure, or the procedures that take place after the structure’s
life, is included in the end-of-life stage. The main operation is the machinery necessary
to carry out the structure’s demolition and the transportation and treatment of the waste
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products produced during that stage. As a result, the distances between the building’s
site and the landfill or waste treatment facilities must be specified. Depending on the
properties of the waste materials, there are three primary options for their disposal: reuse,
recycling, or landfilling. Concrete and steel are the most common materials used in bridge
construction. Waste treatment options are based on the population’s needs and the region
under consideration.

The inventory analysis constitutes the data gathering for all the materials and energy
consumption required to develop all the processes involved in the bridge life cycle. When
these processes’ outputs are considered, the environmental impact of the product being
evaluated can be determined. The processes used in every stage are shown in Figure 2.

SCCB LCA model

Manufacturing Construction Use and Maintenance End of Life

Activities:

• Concrete production
• Reinforcement steel

production
• Hot rolled steel

production
• Bridge sections

welding
• Concrete transport
• Reinforcement

transport
• Bridge sections

transport

Activities:

• Pre‐slab production
(used as formwork)

• Pre‐slab transport
• On site welding
• Concrete pouring

Activities:

• Concrete repair
• Concrete carbonation

Activities:

• Concrete dismantling
and crushing

• Steel cutting and
dismantling

• Concrete transport to
landfill

• Steel transport to
landfill

• Concrete carbonation

Figure 2. Bridge life cycle model stages and activities.

The LCA impact was evaluated using a Python 3 script created using information
from Ecoinvent [32] in version 3.7.1. and soca in version 2 [33]. Data have been obtained by
modeling one unit of every product with GreenDelta’s OpenLCA 2.4.0 software. This tool,
which is open source, enables the LCA, particularly for the scientific community [41].

2.3. Problem Definition

The structural optimization problem chosen for this research has been a 60-100-60 m
SCCB deck. The geometry of this deck is box-girder. The optimization problem
has been defined previously in recent studies where SOO procedures have been ap-
plied [12]. This research applies an MOO game-theory-based procedure to this existing
optimization problem.

2.3.1. Variables and Parameters

The structural problem considers a total of 34 design variables. These variables
consider the bridge cross-section and stiffener geometry, the slabs’ reinforcement, and the
materials’ strength. The variables are grouped in four groups corresponding to the cross-
section geometry variables (b, αw, hs, hb, h f b, t f1 , b f1 , hc1 , tc1 , tw, hc2 , tc2 , bc2 , t f2 , hs2),
the stiffeners and floor beam variables (ns f2

, dst, dsd, s f2 , sw, st, h f b, b f b, t f f b
, tw f b ), which

define the stiffeners and transverse elements position and geometry, the reinforcement
and shear connectors variables (nr1 , nr2 , ϕbase, ϕr1 , ϕr2 , hsc, ϕsc), and the materials’ strength
variables ( fck, fyk, fsk). Figure 3 shows the geometrical variables’ position in the cross-
section while Figure 4 shows the floor beams and stiffeners variables. The optimization
problem nature is discrete, as stated in previous research on this optimization problem [18].
All SCCB variables have been defined considering a lower bound, an upper bound, and
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a step size. The discretization of the variables has been summarized in Table 3. Considering
all combination possibilities, the number of designs is equal to 1.38 × 1046.

Table 3. Optimization problem variables and boundaries [12,13,18].

Variables Unit Lower Limit Upper Limit Step Size Possibilities

Geometrical variables

b m 7 10 0.01 301
αw deg 45 90 1 46
hs mm 200 400 10 21
hb cm 250 (L/40) 400 (L/25) 1 151
t f1 mm 25 80 1 56
b f1 mm 300 1000 10 71
hc1 mm 0 1000 1 101
tc1 mm 16 25 1 10
tw mm 16 25 1 10
hc2 mm 0 1000 10 101
tc2 mm 16 25 1 10
bc2 mm 300 1000 10 71
t f2 mm 25 80 1 56
hs2 mm 150 400 10 26

Stiffeners and floor beams

ns f2
u 0 10 1 11

dst m 1 5 0.1 41
dsd m 4 10 0.1 61
s f2 mm IPE 200–IPE 600 * 12
sw mm IPE 200–IPE 600 * 12
st mm IPE 200–IPE 600 * 12

h f b mm 400 700 100 31
b f b mm 200 1000 100 9
t f f b

mm 25 35 1 11
tw f b mm 25 35 1 11

Reinforcement and shear connectors

nr1 u 200 500 1 301
nr2 u 200 500 1 301

ϕbase mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr2 mm 6, 8, 10, 12, 16, 20, 25, 32 8
hsc mm 100, 150, 175, 200 4
ϕsc mm 16, 19, 22 3

Material strength

fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2

* Following the series of IPE profiles defined in [42].

Furthermore, the optimization problem is defined by some conditions that do not
vary during the optimization problem. These conditions without variation are named
parameters. This optimization problem considers the same parameters defined in the
original problem [36]. The first parameters defined are bridge length and width. The entire
length of the bridge is 200 m, divided into two lateral spans of 60 m and one central of
100 m, and its width (W) is 16 m. The following parameters are the variables’ bounds
defined in Table 3. In addition, in this problem exist other parameters that define the
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position and the minimum values for some elements. This is the case of the reinforcement
areas, lower flange, web thicknesses, and lower slab distributions represented in Figure 5.
The minimum value of the web and bottom flange thicknesses (twmin , t f2min) are defined
as 15 and 25 mm, respectively, by specific design guidelines [43,44]. The last geometrical
parameter is the reinforcement coating which is the one defined in Eurocode 2 [45] for an
XD2 environment, being 45 mm.

sf₂

tf₂

b

hs

hb

tf
₁, bf₁

hc₁tc₁
tw

hc₂

bc₂

tc₂
nsf₂

hs₂

sw

αw

Figure 3. SCCB structural optimization problem cross-section variables.

hfb

hfb

st, dst

sf₂ nsf₂

sw

dsd

bfb, tffb, twfb

Øsc, hsc

bfb

tffb

twfb

Figure 4. SCCB structural optimization stiffeners and floor beam variables.

The following parameters define the characteristics of concrete following Eurocode 2 [45]
regulation. These parameters are the maximum aggregate size, fixed in 20 mm, and the steel
and concrete Young longitudinal and transverse modulus. For steel, these parameter values
are fixed in 210,000 MPa and 80,769 MPa, respectively, while for concrete, they depend on
the strength, with the expressions being 22 · (( fck + 8)/10)3 and Ecm/(2 · (1 + 0.2)).

Finally, the last parameters define the bridge service life, structural class, and loading
parameters. Service life defined for this kind of structure is 100 years, while the structural
class corresponds to S5 according to Eurocodes [46]. The loads considered in the bridge are
self-weight, dead loads, traffic, temperature variation, and wind. All these loads have been
defined following the Eurocode 1 [46].

tf₂min

tf₂

twmin

tw

twmin

hs₂

Thickness of lower flange Thickness of the web

Reinforcement of the upper slab Lower slab position

L / 3 L / 3

Asr₁
Asbase

Asr₁
Asr₂

Asr₁
Asbase

Figure 5. Reinforcement, thicknesses, and lower slab distribution in bridge spans.

2.3.2. Constraints

The optimization problem’s restrictions are related to the structural safety (ULS)
and serviceability (SLS) constraints specified by the rules [28,45,47]. In addition, limitations
were included by specific design guidelines [43,44].
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The ULS relates to the structural resistance of bridge sections, whereas the SLS cor-
responds to the prescribed stresses of the materials and structure deflection limitations.
The prescribed loads and combinations correspond to those imposed by Eurocode 1.

Local and global structural models were undertaken for ULS checking. The feasibility
of solutions is related to shear, flexure, torsion, and flexure-shear interaction checking in
the case of global analysis. To determine the section’s resistance, the shear lag [28] and
slenderness of Class 4 sections [45] were taken into account. The accuracy of the iterative
Class 4 reduction method was specified at 10−6. Sections were homogenized by taking
into account the coefficient (n) between the longitudinal deflection modulus of concrete
(Ecm) and steel (Es), as described by Equation (14). Creep and shrinkage of concrete
were determined by the Eurocodes [28,45,47] standard. Local modeling was performed to
establish the floor beam and diaphragm response to ULS.

n =
Es

Ecm
(14)

The SLS limitations, deflection, the material’s tension limit, and fatigue were deter-
mined. The deflection limit was established by Spanish regulation IAP-11 [48], establishing
L/1000 as the maximum deflection value for frequent combinations of live loads. In this in-
stance, L denotes the length of each span. In addition, structural limits and geometrical con-
straints were specified. All structural tests were specified using a Python-programmed [49]
numerical model.

Both ULS and SLS checking coefficients relate to the difference between the design
values of the effects of actions (Ed) and its associated resistance value (Rd), as shown by
Equation (15). If these coefficient values are higher than or equal to one, the section satisfies
the constraints defined in Equation (3):

Rd(X⃗)

Ed(X⃗)
≥ 1 (15)

2.4. Sine Cosine Algorithm

The original Sine Cosine Algorithm (SCA) was proposed in 2016 by Mirjalili [50] and
corresponds to a swarm intelligence class metaheuristic that uses sine and cosine functions
to explore and utilize the search space. In addition, using Pt

j , which corresponds to the
location of the target solution for iteration t and dimension j, to shift the solutions, the best
solution so far is often employed. In addition, the method employs three numbers between
0 and 1 (r1, r2, and r3). Equations (16) and (17) illustrate the updating mechanism used:

xt+1
i,j = xt

i,j + r1 × sin(r2)× | r3Pt
j − xt

i,j | (16)

xt+1
i,j = xt

i,j + r1 × cos(r2)× | r3Pt
j − xt

i,j | (17)

As the nature of the SCA algorithm is continuous, a discrete version of this algorithm
has been used in this research. The discrete sine and cosine algorithm (SCA) was chosen
for its balance between exploration and exploitation in the search space. The parameters
were set as follows: (r1) and (r2) were initialized to control the movement towards or away
from the best solution and (r3) was used to switch between sine and cosine functions.
These parameters were chosen based on their ability to avoid premature convergence
and maintain diversity in the population [51]. As this discrete version has been proposed
by Martínez-Muñoz et al. [12] and recently applied to this optimization problem with
an SOO approach the parameters used are the ones defined in this study. Furthermore,
the algorithm is compared with others getting better results, justifying its use for this
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optimization problem. This discrete version uses the velocities obtained for the second
term of Equations (16) and (17), which is the one that controls the variables’ vector change.
It applies a v-shape transfer function | tanh(v) | to it as proposed by Hussien et al. [52].
The value obtained is compared with a random number between [0, 1). If the value of
the random number is higher than the one obtained by the transfer function, the variable
remains without changes; otherwise, a β value is defined and compared with a new random
number to define if the variable takes the best value variable or change it to a near value.
This β value has been tuned for this optimization problem in Martínez-Muñoz et al. [12],
setting it to 0.8.

It should be noted that some individual solutions can be unfeasible due to the con-
straints applied to the optimization problem defined in Section 2.3.2. When it occurs,
a penalty function is applied to the objective function to increase its value proportionally to
how far it is from meeting the constraint as defined in Equation (18):

fi(X⃗) =
fi(X⃗)

Rd/Ed
(18)

2.5. Multi-Objective Preferred Solutions Selection

As the execution of the algorithm is repeated 30 times, different solutions are obtained.
In SOO, the best is defined by the one that gets the lower objective function value. In this
case, a method for the best individual selection must be followed, as four objective functions
have been chosen for the MOO. The procedure applied for reaching the preferred solutions
is proposed by Yepes et al. [53]. This strategy uses the three Minkowski metrics to choose the
solution closest to the ideal point. This method applies the Manhattan (L1), Euclidean (L2),
and Tchebycheff (L∞). Equation (19) shows how the distance from any point z(x) ∈ Z ⊂ Rq

is evaluated in the p norm:

Lp = d(z(x), z∗, p) =

[
q

∑
j=1

λ
p
j

∣∣∣z∗j − zj(x)
∣∣∣p
]1/p

, p = 1, 2, . . .

L∞ = lim
p→+∞

Lp = max(λj

∣∣∣z∗j − zj(x)
∣∣∣), j = 1, . . . , q

(19)

where zj(x), j = 1, . . . , q are the criteria chosen, z∗ = (z∗1 , . . . , z∗q) is the best values vector,
and λj, j = 1, . . . , q the criteria weights, defined in Equation (20). These are composed of
two components. The first corresponds to the values obtained from a multi-criteria decision-
making process (wj) and can contain a subjective component. The second component (δj)
normalizes the criteria values. In Yepes et al. [53], the weights (wj) are obtained by applying
the analytic hierarchy process. In this case, the entropy theory [26] has been chosen to
obtain the weights as this method does not require decision-makers and gives greater
weight to the criterion that is better able to discriminate between alternatives. Furthermore,
as all the objective functions are quantitative, no subjectivity is added to the process.

λj =
wj

δj
=

wj

max
∣∣zj(x)

∣∣ , x ∈ X (20)

3. Results and Discussion
This section analyzes and compares the results obtained for the game theory MOO

approach strategy with a cost SOO procedure. Furthermore, the results obtained have
been compared with recent SCCB optimization research. For this purpose, 100 runs of
the algorithm have been performed to reach optimum designs. The Minkowski distance
methodology has been applied to these 100 optimal individuals to obtain the best for
each distance.
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As defined in Section 2.1, the first step corresponds to the minimization and maximiza-
tion of every objective function considered for the MOO problem. In this case, four objective
functions have been considered, whose expressions are defined in Equations (9)–(12). Five
iterations have been carried out for every maximization and minimization to get the worst
and best values, respectively. Table 4 shows the results obtained from the algorithm’s
runs for obtaining the maximum and minimum. The values chosen as best and worst
correspond to the minimum and maximum of every five iterations. The algorithm used for
the optimization process is the discrete SCA defined in Section 2.4.

Table 4. Maximum and minimum values obtained from SOO of every objective function.

Iteration
Minimization Maximization

C ELCA SLCA CS C ELCA SLCA CS

1 3.847 × 106 4.387 × 105 5.118 × 109 4.221 × 102 4.292 × 107 4.690 × 106 1.578 × 1010 1.063 × 104

2 3.827 × 106 4.404 × 105 5.140 × 109 4.140 × 102 3.387 × 107 1.071 × 106 5.564 × 1010 8.327 × 103

3 3.858 × 106 4.396 × 105 5.108 × 109 4.140 × 102 4.418 × 107 1.700 × 106 5.216 × 1010 1.065 × 104

4 3.826 × 106 4.423 × 105 5.109 × 109 4.341 × 102 2.451 × 107 4.389 × 106 5.091 × 1010 4.181 × 103

5 3.846 × 106 4.413 × 105 5.133 × 109 4.542 × 102 2.566 × 107 3.604 × 106 4.653 × 1010 1.020 × 104

Min 3.826 × 106 4.387 × 105 5.108 × 109 4.140 × 102 Max 4.418 × 107 4.690 × 106 5.564 × 1010 1.065 × 104

Results shown in Table 4 correspond to the best fi(X⃗∗
i ) and worst Fwi values used in

Equation (5) for normalizing the objective functions’ results. Once these values have been
obtained, the game theory objective function is used for carrying out the MOO process
using the discrete SCA algorithm. This procedure produces 100 optimum individuals.
The Minkowski distance method has resulted in three best design solutions corresponding
with the Manhattan (L1), Euclidean (L2), and Tchebycheff (L∞) distances to the ideal point.
This ideal point is defined by every of the lower values of every objective function shown in
Table 4. For obtaining the values of the Minkowski distances, the weights associated have
been calculated using the entropy theory [26]. The objective metrics preferred solution,
weights, and the associated results of objective functions considered are shown in Table 5.

Table 5. Objective function and metrics values for preferred solutions.

Best Metric Cost ELCA SLCA CS L1 L2 L∞

L1 3,829,816 438,661 5,103,214,053 434 0.0069 0.0064 0.0064
L2 3,871,234 442,250 5,154,756,687 422 0.0087 0.0044 0.0026
L∞ 3,871,234 442,250 5,154,756,687 422 0.0087 0.0044 0.0026
Cost 3,830,396 439,182 5,105,214,208 882 0.1063 0.1057 0.1057

Weights 0.2479 0.2477 0.2479 0.2565

First, a comparison has been made for the variation of the objective function during the
optimization problem comparing the MOO designs with a cost SOO procedure obtained
following the method described in [18]. In Figure 6, it can be seen the comparison of the
trajectories obtained. It should be noted that the best design obtained from L2 and L∞ is
the same, and consequently, only one representation has been made. As seen, apparent
differences can be observed in how the algorithm moves through the solution space to
obtain the optimum. In cost optimization, the algorithm decreases costs and reduces ELCA
and SLCA due to the cost reduction of the used material.

Conversely, the value of the CS of the upper slab does not have a clear trend reaching
the end of the process, a significant difference compared to the MOO design solutions.
If the MOO design is obtained, it can be seen that from 500 iterations, all objective functions
are stabilized. This validates the number of iterations used for the proposed method.
Furthermore, it can be seen that the MOO procedure’s best individual result L1 decreases,
at the beginning of the process, the cost, ELCA, and SLCA criteria in a more straightforward
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way. From 325 iterations, the value of these objective functions is stabilized. From that
point, the CS of the RC slab reduction continues. The reasons for this can be observed in
Figure 7. The essential material and, consequently, the most impactful, is the rolled steel
that materializes the steel beam in the bridge’s cross-section is reduced drastically. On the
contrary, the L2 and L∞ solutions reduce at the same time all criteria. The differences
observed regarding the amounts of the materials can be seen in the box plot of Figure 7.
In contrast to SOO, MOO produces a lower amount of reinforcing steel and increases
the rolled steel amount to obtain a similar cross-section design strength. The results
variation depends basically on the inertia of the cross-section, and consequently, different
configurations can be found by varying the distribution of structural and reinforcing steel
in the cross-section, obtaining similar results in the objective functions.
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Figure 6. Objective functions variation during the optimization process for both MOO and cost SOO.

As shown in Table 5, depending on the solution chosen, the MOO optimization can
become even better in terms of cost than the SOO. If the L1 metric solution is compared
with the SOO, it can be seen that a reduction of 580 EUR is produced. Furthermore, this
is compared with the study of Martínez-Muñoz et al. [18] that applied SCA for both cost
and CO2 emissions SOOs to this structural problem. In that case, the cost SOO best value is
3,829,666 EUR, compared with the best value of the MOO strategy applied in this research
being lower by only 150 EUR (8.2h less). Furthermore, if the result is compared to the CO2

emissions best design in the same study of Martínez-Muñoz et al. [18], it can be observed
that it takes a cost value of 4,096,922 EUR, increasing the best cost by 6.98%. The MOO
strategy proposed is capable of finding sustainable and better constructive simplicity
solutions that do not increase the cost for this optimization problem.

The results from a cost SOO and the best Minkowski metrics individuals of the MOO
structural problem variables are shown in Table 6. As described before, the difference in
material amounts is an increase in the amount of structural steel to allow for the reduction
of reinforcing steel. Focusing the analysis on the slab reinforcement, it can be observed
that the base reinforcement bars’ diameter takes a higher value allowing for reducing the
number of bars. This reduction is produced to improve the constructive simplicity of the
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upper slab. Two principal reasons justify this. The first one is that the distance between
bars increases, and consequently, the concrete’s vibration can be performed more efficiently.
Moreover, reducing bars reduces the time of placement of these bars.
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Figure 7. Reinforcements and rolled steel amounts data obtained from both MOO and SOO.

Consequently, this steel amounts variation directly impacts the values of the design
variables of the problem, as shown in Figures 8–10. First, the transverse section main
variables have been compared in Figure 8. The main difference found is an increase in the
depth of the steel beam hb and the distance between transverse stiffeners dst, while the
diaphragms dsd, which control the torsional resistance of the bridge, increase. The results
of SOO and MOO are similar concerning the angle of the webs (αw).

The following analysis focuses on the thicknesses and widths of the bridge flanges. It
can be seen in Figure 9 that the width of the top flange (b f1 ) increases while its thickness (t f1 )
remains constant. This allows adding more inertia to resist the negative bending moments
in supported zones and compensate for the loss due to the reduction of reinforcing steel.
The bottom flange and web thicknesses (t f2 , tw) increase in the case of MOO design.
Regarding the heights and thicknesses of the cells proposed for this design in Section 2.3,
it can be seen that the results shown in Figure 10 give positive values for the heights.
This result is similar to the one obtained for SOO designs in this structural optimization
problem [12,13,18]. It is observed an increase in the thicknesses (tc1 , tc2) of these elements
and an increase in the bottom cells’ height (hc2), while the upper cell remains similar in
terms of height.
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Figure 8. SOO and MOO strategies’ cross-section variable values.
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Figure 9. SOO and MOO strategies’ flange and web variable values.

The variables that define the strength of the materials are the same for all designs
obtained in this study. Concrete characteristic strength takes 25 MPa, corresponding
with the lower value allowed by the concrete European regulation [45]. Regarding the
reinforcement yield stress, the results are the same for all design alternatives taking 500 MPa
as the value. Finally, a comparison of the structural steel yield stress has been made. When
optimizing cost with SOO, the yield stress obtained is 275 MPa, the same as with the
design reached by the MOO strategy. Conversely, in CO2 [12,18] and embodied energy [13]
SOO studies that solve this structural problem, the yield stress increase. This is because
the CO2 and embodied energy associated with an increase in yield stress are null. This
is also the case of ELCA and SLCA, where the impact does not increase for modeling
higher-strength steels. The only thing that modifies the steel’s impact is its recycling ratio
for both environmental and social impacts [36].
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Figure 10. SOO and MOO strategies’ cell variable result values.

Table 6. Best solutions obtained for cost SOO and MOO L1, L2, and L∞.

Variables Unit Cost L1 L2, L∞

b m 7 7 7
αw deg 49 70 87
hs mm 200 200 200
hb cm 315 252 381
h f b mm 420 440 610
t f1 mm 58 51 57
b f1 mm 560 480 620
hc1 mm 130 170 960
tc1 mm 21 18 17
tw mm 16 27 16
hc2 mm 490 270 900
tc2 mm 24 24 25
bc2 mm 300 710 370
t f2 mm 25 25 29
hs2 mm 150 150 150
ns f2

u 0 0 0
dst m 1.1 2.9 2.4
dsd m 4.3 4.0 7.2
b f b mm 400 200 400
t f f b

mm 27 30 30
tw f b mm 32 30 31
nr1 u 303 200 200
nr2 u 200 200 200

ϕbase mm 6 25 20
ϕr1 mm 6 6 6
ϕr2 mm 6 6 6
s f2 * mm 400 220 300
sw* mm 270 450 200
st* mm 600 550 600
hsc mm 100 100 100
ϕsc mm 16 16 19
fck MPa 25 25 25
fyk MPa 275 275 275
fsk MPa 500 500 500

Structural steel kg 2,062,748 2,088,751 2,064,727
Reinforcement steel kg 59,394 56,657 56,584

Concrete m³ 528 528 528

4. Conclusions
This research has utilized a game theory approach to perform MOO on a steel–concrete

composite bridge deck. The cooperative game strategy allows for finding a balance between
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various objectives. The structural problem defined involves 34 variables and 1.38 × 1046

combinations. The optimization algorithm employed is a discretized version of the Sine
Cosine Algorithm (SCA), which was adjusted for discrete optimization by using a v-shape
transfer function. The preferred solutions were then selected using a Minkowski distance
method based on entropy theory to assign weights to the objectives, which included cost,
environmental life cycle assessment (ELCA), social life cycle assessment (SLCA), and the
ease of construction of the upper slab.

The results indicate that the MOO approach leads to similar cost increases of 8.2‰
compared to the single-objective optimization (SOO) approach based on cost. The most
significant difference between the SOO and MOO designs is an increase in the amount of
structural steel and a reduction in the reinforcement of the upper slab. This reduction was
achieved by increasing the diameter of the bars, which improves the constructability of the
slab and reduces the need for concrete vibration. The values of the steel beam variables
were increased to compensate for the negative bending strength in the support zones.

In conclusion, the MOO approach can result in a sustainable design that also considers
the ease of construction, as evidenced by the decreased reinforcement of the slab and the use
of lower yield stress of the structural steel (275 MPa). This research demonstrates that the
game-theory-based multi-objective optimization method effectively balances sustainability
and construction simplicity in steel–concrete composite bridge design. The innovative ap-
proach provides practical solutions that can be applied to real-world engineering problems,
offering significant improvements in environmental and social impact assessments.

While our research provides a robust framework for optimizing bridge design, it has
certain limitations. The computational complexity of the game-theory-based approach can
be high, and the method may require further refinement to handle larger-scale problems
efficiently. Future research can explore incorporating hybrid optimization algorithms or
metamodels to improve performance and reduce computation time.
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