Durabilidad y vida útil de las infraestructuras

2014-11-12 16.38.52
Deterioro prematuro del hormigón. Imagen: V. Yepes

La durabilidad de las construcciones constituye uno de los aspectos clave que preocupan y van a preocupar a los técnicos en las próximas décadas. Tras un crecimiento masivo en la construcción, se plantean problemas tan serios como el mantenimiento y la sostenibilidad de las infraestructuras, de forma que se consigan los indicadores mínimos de servicio que permitan un uso seguro y adecuado de las mismas. Estamos inmersos, de hecho, en una verdadera “crisis de las infraestructuras”, fuertemente relacionada con la crisis financiera, económica, social y ética que nos envuelve en este momento. Todo ello, como podemos ver, tiene que ver con la durabilidad, tal y como vimos en una tesis de máster que dirigí recientemente (Esteve, 2015). Para poder hablar sobre los factores que afectan a la durabilidad, es necesario primero definir el concepto de durabilidad según la normativa y según diversos autores, así como el concepto de vida útil, final de vida útil y rendimiento. También se definen otros conceptos aparecidos en el estudio, como vulnerabilidad y mantenibilidad.

puente-romano
Cayo Julio Lacer,  y la leyenda “que durará tanto cuanto el mundo durare”, constituye la lección más importante para los ingenieros siempre que se visita el puente de Alcántara (Cáceres).

Durabilidad

 

TROMPILLO-ROLANDOLa Instrucción de Hormigón Estructural (EHE-08) define la durabilidad de una estructura de hormigón como “su capacidad para soportar, durante la vida útil para la que ha sido proyectada, las condiciones físicas y químicas a las que está expuesta, y que podrían llegar a provocar su degradación como consecuencia de efectos diferentes a las cargas y solicitaciones consideradas en el análisis estructural. Una estructura durable debe conseguirse con una estrategia capaz de considerar todos los posibles factores de degradación y actuar consecuentemente sobre cada una de las fases de proyecto, ejecución y uso de la estructura”.

En la norma ISO 15686-1 se define la durabilidad como “la capacidad de los edificios o alguna de sus partes para desenvolver el papel para el cual fueron diseñados durante un período específico bajo la influencia de determinados agentes”.

El concepto de durabilidad también puede ser entendido como la “habilidad que un edificio o componente de un edificio tiene para alcanzar el rendimiento óptimo de sus funciones en un determinado ambiente o sitio, bajo un determinado tiempo sin realizar trabajos de mantenimiento correctivo ni reparaciones” (CSA, 2001).

Algunos autores han intentado ofrecer una definición de durabilidad más completa, teniendo en cuenta los efectos actuales del cambio climático. Es el caso de Mendoza y Castro (2009), que definen la durabilidad como “la capacidad de un material de construcción, elemento o estructura de hormigón de resistir las acciones físicas, químicas, biológicas y ambientales vinculadas al efecto del cambio climático global con su entorno durante un tiempo determinado previsto desde el proyecto, manteniendo su serviceabilidad y conservando su forma original, propiedades mecánicas y condiciones de servicio”. Se entiende por “serviceabilidad” (sic) como la capacidad de un producto, componente, ensamble o construcción para desempeñar las funciones para las cuales son diseñadas y construidas (ACI, 2000).

Vida útil

La Instrucción de Hormigón Estructural (EHE-08) define la vida útil de una estructura como el “período de tiempo, a partir de la fecha en la que finaliza su ejecución, durante el que debe mantenerse el cumplimiento de las exigencias. Durante ese período requerirá una conservación normal, que no implique operaciones de rehabilitación. La vida útil nominal depende del tipo de estructura y debe ser fijada por la Propiedad previamente al inicio del proyecto”. En esta instrucción, se emplea el término “vida útil” de forma equivalente a como lo hace el Código Técnico de la Edificación cuando hace referencia al “período de servicio”.

Acueducto de los Milagros (Mérida)
Acueducto de los Milagros (Mérida)

En la norma ISO 15686-1 se define la vida útil de un edificio como “el período de tiempo después de la instalación o construcción durante el cual un edificio o sus partes cumplen o exceden los requisitos mínimos de rendimiento para lo cual fueron diseñados y construidos”.

Muchas veces el concepto de vida útil es confundido con el de durabilidad. Según Silva (2001), puede considerarse que la vida útil es la cuantificación de la durabilidad, y por tanto es cada vez más importante que se proyecte y construya teniendo en cuenta criterios de durabilidad para, de ese modo, prolongar la vida útil de las edificaciones.

Algunos autores han propuesto una definición de vida útil o vida de servicio teniendo en cuenta los efectos actuales del cambio climático. Es el caso de Mendoza y Castro (2009), que definen la vida de servicio como el “periodo de tiempo durante el cual el desempeño de un material, elemento o estructura de hormigón conserva los requerimientos de proyecto en términos de seguridad (resistencia mecánica y estabilidad, seguridad en caso de incendio, seguridad en uso), funcionalidad (higiene, salud y medio ambiente, protección contra el ruido y ahorro energético y confort térmico) y estéticos (deformaciones, agrietamientos, desconchamientos), con un mínimo de mantenimiento que permita controlar los efectos del cambio climático global en su entorno”.

Fin de la vida útil

Es difícil determinar cuándo se produce el final de la vida útil de una edificación. Según autores como Talon et al. (2004) “el final de la vida útil llega cuando los materiales o componentes de construcción, una vez instalados y construidos, usados y aplicados a una parte del inmueble, ya no responden a los requerimientos de rendimiento; y cuando por sus fallos físicos ya no es conveniente económicamente seguir con un mantenimiento correctivo para dichos componentes”.

2013-06-15 09.33.18
¿Cuál será la vida útil de nuestras modernas infraestructuras? Ciudad de las Artes y las Ciencias (Valencia). Imagen: V. Yepes

Por su parte, otros autores como Gaspar (2002) definen el final de la vida útil de una construcción como un “punto en el tiempo en el cual ésta deja de poder asegurar las actividades que en ella se desarrollan, por obsolescencia funcional, falta de rentabilidad económica o degradación física de sus componentes más determinantes”.

En definitiva, el final de la vida útil se dará cuando los requisitos esenciales dejen de cumplirse. Los requisitos esenciales establecidos en el Código Técnico de la edificación son:

  • Seguridad estructural.
  • Seguridad en caso de incendio.
  • Seguridad de utilización y accesibilidad.
  • Higiene, salud y protección del medio ambiente.
  • Protección frente al ruido.
  • Ahorro de energía.

En la siguiente gráfica, elaborada por Ferreira (2009), se muestra como el fin de la vida útil está condicionado por criterios de seguridad, funcionalidad y aspecto. La seguridad es el criterio más importante, por lo que tiene un nivel de exigencia superior a los otros dos criterios. A pesar de eso, algunas veces el fin de la vida útil puede verse condicionado sólo por criterios estéticos o funcionales, como muestra la siguiente figura:

Sin título
Degradación de las diferentes propiedades de un elemento constructivo (Ferreira, 2009)

Rendimiento

El rendimiento, según la definición de Trinius (2005), “es la capacidad del material para cumplir con sus funciones dentro del sistema edificado, y se puede medir tanto cuantitativamente como cualitativamente, dependiendo de los requerimientos de diseño y de las condiciones de la fase de uso, operación y mantenimiento del inmueble”.

Por su parte, el British Standards Institute define el rendimiento de una edificación como el comportamiento de un producto durante su utilización.

Tal como establece Mairteinsson (2005), tanto la vida útil como el rendimiento dependerán directamente de los factores de uso del material, no solamente de manera aislada, sino de manera integrada al edificio como parte de un sistema completo.

Vulnerabilidad

La vulnerabilidad, según es entendida por Monjo (2007), “es el conjunto de debilidades (procesos patológicos posibles) que presenta un elemento constructivo al quedar expuesto a las acciones exteriores previsibles durante su vida útil”. La vulnerabilidad depende de la calidad del elemento constructivo, es decir. De sus características físicas y químicas, así como de la solución constructiva empleada. Puede considerarse la inversa de la durabilidad.

Según este autor, la durabilidad de un producto de construcción debe establecerse en función del análisis de su vulnerabilidad, y dicha vulnerabilidad depende de una serie de condiciones objetivas que afectan al elemento constructivo:

  • La función constructiva del elemento en el edificio.
  • Las acciones externas que actúan sobre el elemento constructivo.
  • La calidad del producto

Mantenibilidad

La norma ISO/IEC 2382-14 define la mantenibilidad como “la habilidad de una unidad funcional, bajo unas condiciones de uso dadas, para ser mantenidas, o restauradas a un estado en el cual puedan realizar sus funciones requeridas, cuando el mantenimiento es ejecutado bajo condiciones establecidas y utilizando procedimientos y recursos prescritos”.

Por su parte, Chew y Silva (2003) expresan el término mantenibilidad como la habilidad de lograr el rendimiento óptimo a través de la vida útil del edificio con un mínimo coste de ciclo de vida.

Referencias:

ACI American Concrete Institute. (2000). Reported by ACI Committee 365 (365.1R-00), Service-Life Prediction, State-of-the-Art Report.

Chew, M. Y. L.; De Silva, N. (2003). Maintainability problems of wet areas in high-rise residential buildings. Building Research and Information, 31(1), 60-69.

CSA Canadian Standards Association. (2001). Guideline on Durability in buildings. Canadá, S478-95, 9-17.

Esteve, V.F. (2015). Estado del arte de los factores que afectan a la durabilidad de las edificaciones. Trabajo Fin de Máster. Máster en planificación y gestión de la ingeniería civil. Universitat Politècnica de València.

Ferreira, A. F. (2009). Previsão da vida útil de revestimentos de pedra natural de paredes. Instituto Superior Técnico. Lisboa: Universidad Técnica de Lisboa.

Gaspar, P. L. (2002). Metologia para o cálculo da durabilidade de rebocos exteriores correntes. Instituto Superior Técnico. Lisboa: Universidad Técnica de Lisboa.

ISO 15686:2011. (2011). ISO (Ed.), Buildings and constructed assets, service life planning.

Marteinsson, B. (2005). Service life estimation in the design of buildings; a development of the factor method. Tesis Doctoral, KTH Research School, Centre for Built Environment, University of Gävle, Suecia.

Mendoza, J. M., Castro, P. (2009). Credibility of concepts and models about service life of concrete structures in the face of the effects of the global climatic change. A critical review. Materiales de construcción, 59(276), 117-124.

Monjo, J. (2007). Durability vs Vulneravility. Informes de la construcción, 59(507), 43-58.

Silva, T. (2001). Como estimar a vida util de estruturas projetadas com critérios que visam a durabilidade. II Workshop sobre Durabilidad de las Construcciones, Sao José dos Campos, Brasil, 133-143.

Talon, A., Boissier, D., Chevalier, J. L., & Hans, J. (2004). A methodological and graphical decision tool for evaluating building component failure. CIB World Building Congress, Toronto, Canadá.

Trinius, W. (2005). Performance based building and sustainable construction. CEN Construction Sector Network Conference, Prague.

Fabricación de mezclas bituminosas en frío

Mezcla en frío

Las mezclas en frío pueden ser abiertas o densas. Las mezclas abiertas, las más difundidas en España por motivos económicos, presentan un contenido de huecos superior al 25%, un bajo contenido de finos y un escaso contenido de fíller inferior al 2%. Las mezclas densas utilizan áridos finos en su composición, emplean como ligante una emulsión de betún puro y un contenido en huecos en mezcla, una vez compactada, menor del 10%. Según el contenido del ligante, las mezclas densas en frío pueden clasificarse en aglomerados densos en frío o grava-emulsiones.

Se pueden elaborar las mezclas abiertas en frío mediante dos sistemas diferentes:

  • En plantas fijas muy simples, al no ser necesario el calentamiento de los áridos, y puesta en obra con extendedora convencional.
  • Con mezcladores móviles sobre camión que fabrican y extienden en un proceso continuo.

Las plantas fijas constan de los siguientes elementos:

  • Tolvas de dosificación volumétrica de áridos. Normalmente son tres tolvas, con un mínimo de dos.
  • Sistema de cintas transportadoras hasta el mezclador.
  • Depósitos de ligante, con dosificación mediante bomba de paletas o engranajes y contador de vueltas o manómetro.
  • Mezcladora continua, que suele ser de doble eje horizontal. Con una cuba de capacidad fija, el tiempo de permanencia o ciclo de amasado se regula mediante la inclinación sobre la horizontal del mezclador y la mayor o menor energía de amasado por la velocidad de giro de las paletas.

 

Resulta curioso que en España las técnicas de aglomerado en frío presentan una utilización menor de la que debiera. Una reflexión sobre el tema la podéis ver en el siguiente enlace del profesor Miguel Ángel del Val: http://nosolocarreteras.blogspot.com.es/2014/05/por-que-no-se-utilizan-mas-las-tecnicas.html.

Os dejo a continuación un vídeo explicativo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, referido al diseño y ejecución de las lechadas bituminosas y los microaglomerados en fríos. Espero que os sea de utilidad.

Asimismo, dejo algunos vídeos al respecto. Espero que os gusten.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Elaboración de mezcla asfáltica

Una mezcla asfáltica, también denominada aglomerado, en general es una combinación de un ligante hidrocarbonato y agregados minerales pétreos. Las proporciones relativas de estos minerales determinan las propiedades físicas de la mezcla así como el rendimiento de la misma como mezcla terminada para un determinado uso. Las mezclas asfálticas se emplean en la construcción de firmes, ya sea en capas de rodadura o en capas inferiores y su función es proporcionar una superficie de rodamiento cómoda, segura y económica a los usuarios de las vías de comunicación, facilitando la circulación de los vehículos, aparte de transmitir suficientemente las cargas  debidas al tráfico a la explanada para que sean soportadas por ésta. Las mezclas asfálticas se utilizan en la construcción de carreteras, aeropuertos, pavimentos industriales, entre otros. Sin olvidar que se utilizan en las capas inferiores de los firmes para tráficos pesados intensos.

Estas mezclas asfálticas pueden ser en caliente, lo más común, o en frío. Estas mezclas asfálticas pueden ser confeccionadas en plantas y con los equipos apropiados para esta labor. El proceso de fabricación de las mezclas asfálticas en caliente implican calentar el ligante y los agregados (excepto quizás el polvo mineral de aportación) y su puesta en obra se realizará a una temperatura muy superior a la ambiente (Pliego de Prescripciones Técnicas Generales PG-3, art. 542 y 543).

El tema da para mucho, pero el objeto de este artículo es introductorio. Os aconsejo que acudáis a la web de la Asociación Española de Fabricantes de Mezclas Asfálticas (ASEFMA). Os dejo a continuación un vídeo a este tema de la elaboración de mezclas asfálticas. Se trata de un vídeo meramente divulgativo, por lo que tiene alguna imprecisión técnica y de traducción. Así y todo, espero que os guste.

Asimismo os dejo un vídeo explicativo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, sobre fabricación y puesta en obra de las mezclas asfálticas.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Editorial de la Universitat Politècnica de València.

HORSOST: Un proyecto de investigación sobre sostenibilidad y estructuras

2013-05-03 09.20.32
Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

Creo interesante comentar en este post los resultados que estamos obteniendo de un Proyecto de Investigación financiado por el Ministerio de Ciencia e Innovación que nuestro grupo de investigación llama HORSOST. Su nombre completo describe el contenido del trabajo que estamos desarrollando: “Diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos“.

Se trata de un proyecto que empezamos en el año 2012 y que tiene prevista su finalización a finales del 2014. Nuestro grupo de investigación está formado por seis profesores y varios becarios de investigación del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de  la Universidad Politécnica de Valencia. En dicho grupo me corresponde el papel de investigador principal. Espero que esta breve descripción os oriente sobre lo que estamos haciendo.

Este proyecto de investigación se encuentra relacionado con otros ya finalizados y otros en marcha, tanto de convocatorias competitivas como de convenios de transferencia tecnológica con empresas (constructoras, empresas de prefabricados, consultoras, etc.).

El objetivo fundamental del proyecto de investigación HORSOST consiste en Continue reading “HORSOST: Un proyecto de investigación sobre sostenibilidad y estructuras”

Agentes que participan en el marcado CE de productos de construcción

El Marcado CE de productos de construcción tuvo sus inicios en el año 1989 cuando se aprobó la Directiva Europea 89/106/CEE, por la que se definían las condiciones en las que se podían comercializar libremente los productos de la construcción entre Estados firmantes del Acuerdo sobre el Espacio Económco Europeo. Actualmente dicha Directiva está derogada, siendo sustituida por el Reglamento (UE) nº 305/2011 del Parlamento Europeo y del Consejo, de 9 de marzo de 2011, por el que se establecen condiciones armonizadas de comercialización de productos de construcción. Este reglamento define los agentes implicados en el proceso de concesión del Marcado CE. Los agentes implicados en la obtención o concesión son los siguientes:

COMISIÓN EUROPEA: Genera, a través de Mandatos al Comité Europeo de Normalización (CEN), las normas europeas armonizadas, publicándolas en el Diario Oficial de la Unión Europea (DOUE) y definiendo el periodo de coexistencia y sistema de evaluación de la constancia de las prestaciones establecido para cada producto de construcción.

MINISTERIO DE INDUSTRIA, ENERGÍA Y TURISMO DE ESPAÑA: Y sus equivalentes gubernamentales de cada Estado miembro. Es el encargado de publicar en el Boletín Oficial del Estado (BOE):

  • Referencia a las normas armonizadas según las publica en el DOUE la Comisión Europea, en su versión española, es decir, como norma UNE EN
  • Designación de los Organismos Notificados que pueden actuar en España para la concesión del Marcado CE especificando el sistema de acreditación necesario
  • Elaboración de guías de aplicación o documentos de apoyo aclaratorios, cuando lo consideran necesario
  • Participación en grupos de trabajo y eventos de difusión enfocados al sector de la construcción
  • Competencias en materia de seguimiento en el mercado de los productos con Marcado CE, competencias que tienen delegadas en sus homólogos de los diferentes gobiernos de las Comunidades Autónomas

ORGANISMOS NOTIFICADOS: Entidades de certificación y laboratorios que son autorizados por el Ministerio de Industria, Energía y Turismo de España. Deben demostrar su competencia técnica, independencia e imparcialidad a través de la acreditación de sus sistemas de certificación por la Entidad Nacional de Acreditación (ENAC) según el sistema o norma de acreditación que el Ministerio establezca. Según el sistema de evaluación de la constancia de las prestaciones tienen definidas unas tareas a desempeñar cuando un fabricante requiere de sus servicios.

ENTIDAD NACIONAL DE ACREDITACIÓN: En cada Estado miembro ha sido designado un organismo único encargado de acreditar a los Organismos Notificados (OO.NN.) bajo el esquema indicado por el Ministerio. Las normas más habituales de acreditación de los OO.NN. son la norma ISO 17020 para las entidades de certificación (entidades de inspección) y la norma ISO 17025 para los laboratorios.

LABORATORIOS: Existen dos tipos de laboratorios, el que actúa como Organismo Notificado, que deberá estar acreditado por ENAC y notificado por el Ministerio; y el laboratorio que asiste al fabricante para su control de producción en fábrica o autocontrol.

FABRICANTE: Utiliza materias primas para obtener un producto conforme a una norma armonizada. Para poder marcar sus productos con el Marcado CE deberá seguir lo establecido en la norma armonizada del producto correspondiente, contratando a los OO.NN. que necesite.

DISTRIBUIDORES: Responsables de la compra-venta de productos manufacturados. El RPC establece una serie de requisitos para que pueda ofrecer a sus clientes los productos con el Marcado CE el fabricante o con el suyo propio.

IMPORTADORES: Responsables de introducir en España el producto procedente de otro país. El RPC define los requisitos para poder realizar estas actividades.

Os dejo a continuación un par de vídeos de AEDIC y AENOR sobre este tema. Espero que os gusten.

Construcción de un puente de bambú

Bambú. Wikipedia

El bambú es un material habitual de construcción en algunos países. Es uno de los materiales usados desde más remota antigüedad por el hombre para aumentar su comodidad y bienestar. Como crece velozmente su uso para la construcción tiene grandes beneficios en comparación con otros materiales como la madera. El clima de las regiones donde crece el bambú es generalmente cálido y húmedo, lo que conlleva al uso de materiales de baja capacidad de almacenamiento térmico y de diseños que permiten la ventilación cruzada. Las construcciones de bambú satisfacen plenamente estos requerimientos, lo que explica su uso en estas zonas.

Alguna de las ventajas de este material son las siguientes:

  • Las cañas de bambú son de medidas y formas majenables, almacenables y sistematizables.
  • Son elementos de alta resistencia con relación a su peso, de sección hueca y con tabiques transversales rígidos, lo cual las hace muy aptas para evitar su ruptura al curvarse.
  • Son fáciles de dividir en piezas más cortas o en tiras angostas, empleando herramientas simples.

Sin embargo, requieren mano de obra especializada para su manejo y presentan una relativa baja durabilidad debido a los ataques biológicos, baja resistencia a huracanes y fuego, por lo que las medidas de protección son esenciales.

A continuación os dejo un pequeño vídeo donde se puede ver la construcción de un puente con cañas de bambú. Espero que os guste.

Mortero autonivelante

El mortero autonivelante es un tipo de mortero muy líquido, utilizado como base para diversos tipos de suelos (gres, porcelánico, parquet, moqueta, mármol, etc.). Este producto, al igual que el resto de morteros, se compone de cemento o anhidrita y arena de granulometría fina. Sus características especiales se deben al uso de aditivos que le confieren mayor fluidez, lo que facilita un acabado más liso y nivelado. En trabajos estructurales como relleno de bases de pilares metálicos, pernos, reparaciones, es recomendable utilizar morteros epoxicos, que entre otras propiedades no tienen retracción. Los morteros autonivelantes con base cemento, a pesar de los aditivos que uses, tienen gran retracción, por lo que es imprescindible la realización de juntas y el cuidado en el curado

Os dejo una batería de vídeos para que veáis el proceso constructivo. Espero que os gusten.

 

Tipos de mezclas bituminosas

Las mezclas bituminosas consisten en una combinación de áridos y un ligante hidrocarbonado de manera que todas las partículas quedan envueltas de forma continua y homogénea. También se denominan aglomerados asfálticos y actualmente se fabrican de forma mecánica en centrales fijas o móviles.

Las ventajas de las mezclas bituminosas para los firmes de carretera son la regularidad superficial que pueden dar los pavimentos de cierto espesor, la seguridad proporcionada por las resistencias al deslizamiento y su puesta en obra en espesores diversos. Los inconvenientes fundamentales son una durabilidad sensiblemente inferior a la vida útil del firme y que la rigidez de estas mezclas varían con la temperatura.

Para la fabricación de las mezclas bituminosas los áridos se clasifican en fracciones uniformes, a partir de los cuales se compone la granulometría elegida. Se considera por separado el filler o fracción que pasa por el tamiz 0.08 UNE.

El filler condiciona la proporción de ligante, ya que es el componente de mayor superficie específica. Ambos forman el mástico (o mastic) que da cohesión a la a la mezcla. El mástico influye en la adhesividad, y en el componente de huecos, por lo tanto en la impermeabilidad y en la resistencia.

Las mezclas bituminosas se pueden clasificar:

  • Según el modo de fabricación y puesta en obra:
    • En caliente, se emplean básicamente betunes que, como ya hemos dicho, necesitan un calentamiento para reducir su viscosidad y conseguir la envuelta con los áridos calientes y una adecuada puesta en obra. Son de uso más generalizado, utilizadas en todo tipo de carreteras donde la calidad exigida sea alta.
    • En frío, se emplean ligantes de baja viscosidad como las emulsiones bituminosas y los betunes fluidificados, que permiten fabricar y aplicar la mezcla a temperatura ambiente. Los betunes fluidificados prácticamente no se utilizan por motivos económicos y contaminantes. Si se aplican son en la construcción y conservación de carreteras secundarias.

 

  • En función del porcentaje de huecos en mezcla:

 

TIPO DE MEZCLA   % HUECOS
Cerradas o densas D Hasta el  5%
Semicerradas o gruesas G Del 5% al 12%
Abiertas A Del 12% al 20%
Drenantes o porosas P Mas del 20%

Las mezclas cerradas se emplean en capas de rodadura, donde el pequeño porcentaje de huecos las hace prácticamente impermeables, protegiendo así a las capas inferiores del firme y a la explanada. Las mezclas semicerradas son menos impermeables y no se usan en capas de rodadura al ser sensibles al envejecimiento. Las mezclas abiertas son muy flexibles, por lo que se usan en capas de rodadura de pequeño espesor en carreteras con tráfico ligero, o como capas de base. Las mezclas porosas o drenantes se utilizan en capas de rodadura de pequeño espesor, consiguiendo evacuar rápidamente el agua de lluvia.

  • Según el tamaño del árido:

 

TIPO DE MEZCLA TAMAÑO DEL ÁRIDO
Gruesas Inferior a 5 – 8 mm
Finas Tamaño max superior a 5-8 mm

Las mezclas finas o morteros se usan como tratamiento superficial en zonas urbanas. Presentan una macrotextura baja, por lo que no pueden usarse para carreteras con velocidades altas. En cambio, las mezclas gruesas son la mayoría de las tipificadas en España. Proporcionan macrotextura al pavimento, por tanto empleadas en capas de rodadura con altas velocidades de tráfico. También se usan como capas intermedias al ofrecer un esqueleto mineral adecuado.

  • Según el tipo de granulometría:
    • Mezclas continuas: Son las más usuales. La granulometría tiende a formar una estructura cerrada. Son sensibles al contenido de ligante (puede variar su comportamiento reológico).
    • Mezclas discontinuas: Típicas en la técnica británica, faltando los tamaños entre 2 y 8 mm. Son mezclas de gran calidad y muy impermeables, pero de elevado precio y susceptibles a las deformaciones plásticas.
  • Según la estructura del árido:
    • Con esqueleto mineral: hormigones y aglomerados asfálticos. Son las más utilizadas. Son las más económicas. Se adaptan a cualquier tipo de solicitación y de capa.
    • Sin esqueleto mineral: másticos y asfaltos fundidos. Son mezclas con elevadas proporciones de filler y de betún con un árido grueso disperso en el mástic. Son caras debido al elevado contenido de ligante. Presentan gran calidad, empleándose donde la impermeabilidad sea un factor decisivo.

 

La clasificación más adecuada es la que se hace atendiendo a la estructura interna de la mezcla, que está condicionada por las proporciones relativas de los distintos componentes (árido grueso, árido fino, filler y betún), ya que tienen una influencia decisiva en las características y propiedades de las mezclas:

  • Mástic bituminosos: mezcla de filler y betún
  • Mortero bituminoso: mezcla de árido fino y mástic
  • Macadam bituminoso: mezcla de árido grueso y betún
  • Hormigón bituminoso: mezcla de árido grueso y mortero (habitual en carreteras)

 

Árido grueso

Árido fino

Filler

Betún

Huecos mezcla

Filler

tipo

Betún

MACADAM ASFÁLTICO

80 – 85

8 – 15

2 – 3

» 3-4

10 – 20

» 1

(100/ 200 )

HORMIGÓN ASFÁLTICO

50 – 65

30 – 45

4 – 8

4-6

3 – 6

1 – 1.5

( 40 / 80 )

MORTERO ASFÁLTICO

30 – 45

40 – 55

8 – 13

6-8

2 – 5

1.5 – 2

( 30 / 60 )

GUSSASPHALT

40 – 50

25 – 30

20 – 30

8-12

1 – 2

2 – 2.5

( 25 / 50 )

MÁSTICO ASFÁLTICO

25 – 30

20 – 30

30 – 40

10-20

0

2 – 3

( 20 / 30 )

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

 

Evolución histórica de la fabricación de mezclas bituminosas

www.aecarretera.com

Los orígenes de las mezclas bituminosas empleadas en firmes asfálticos se remontan a 1830, cuando el alquitrán se utiliza en algunos riegos superficiales en la pavimentación de carreteras. Sin embargo, los primeros aglomerados realizados in situ con alquitrán se ejecutaron hacia 1850 en algunas carreteras y vías urbanas del Reino Unido. A partir de ese momento la técnica se desarrolla en paralelo con la iluminación con gas ciudad, en cuya fabricación se obtiene dicho ligante como subproducto.  En España se pavimentan con alquitrán las zonas peatonales de la Puerta del Sol de Madrid entre 1847 y 1854. En torno a 1870, en Estados Unidos, se empiezan a utilizar mezclas fabricadas a partir de rocas asfálticas y de asfaltos naturales, si bien estos materiales ya habían sido empleados en algunas pavimentaciones en Burdeos y Lyon en 1810. Más tarde como consecuencia del desarrollo de la industria del petróleo se comienza a emplear betunes de destilación.

A finales del siglo XIX el norteamericano C. Richardson sentó las bases de la tecnología de las mezclas bituminosas para pavimentación. Después de la I Guerra Mundial surge la industria de la fabricación en central de las mezclas bituminosas, aunque es después de la II Guerra Mundial cuando se produce un gran desarrollo tecnológico de estos materiales, debido principalmente a las grandes necesidades de construcción acelerada de pistas de aterrizaje militares.

En España empiezan a ejecutarse de forma significativa pavimentos con mezclas bituminosas a partir de 1926, año en el que se programó la pavimentación con mezclas bituminosas de 223 km de carreteras dentro del Circuito Nacional de Firmes Especiales. Os recomiendo a este respecto un excelente artículo sobre los pavimentos de las carreteras españolas en el siglo XX, del profesor Miguel Ángel del Val.

 

Mapa de carreteras dentro del Circuito Nacional de Firmes Especiales (1926). Wikipedia

Obras de rectificación de trazado, con la supresión de una curva peligrosa, en la Carretera Nacional IV. Años cincuenta. http://carreterashistoricas.blogspot.com.es/

El primer paso para mejorar las infraestructuras viarias se da en 1950 con la aprobación del Plan de Modernización de las Carreteras. Esta época se caracteriza por el crecimiento del parque de vehículos y por una discreta mejora de las carreteras. Las plantas que se empezaron a construir en estos años eran muy rudimentarias. Se alimentaban con carretillas con las que se hacía una predosificación de los áridos en frío, se clasificaba con trómeles, el asfalto se medía en una cubeta con un índice que marcaba el volumen, que se vertía a continuación por volteo a mano. En esta época el dominio absoluto es de las plantas discontinuas tanto para los contratistas como para las administraciones. Las plantas continuas, en las que la mayor parte de sus elementos son similares a las plantas discontinuas, (alimentación en frío, tambor secador, clasificación en caliente) sólo se diferencian en la alimentación en caliente continua y en el mezclador en continuo de los áridos, asfalto y filler, a pesar de esto, este tipo de plantas se emplearon con ciertas reservas, injustificadas ya que producían un aglomerado de excelente calidad.

Entre los años 1960 y 1970 se producen algunos hechos que suponen un avance tecnológico de gran calado de las plantas asfálticas:

  • Se produce la liberalización de la importanción de maquinaria de construcción, lo que permite el uso de máquinas modernas, de gran producción.
  • El arranque, en 1967, del Plan de Mejora de la Red de Itinerarios Asfáticos (plan REDIA) y la construcción de las primeras autopistas en España. Se empiezan a modernizar las carreteras -la mayoría en muy malas condiciones-, en su mayoría constituidas con firmes con tratamiento superficial, pocas con aglomerado y algunas de adoquín. Este hecho provoca la adquisición de maquinas modernas y eficientes por parte de las constructoras.
  • El inicio de la fabricación mixta en España de las plantas asfálticas. Se empieza por construir elementos sencillos (tolvas, silos, etc.), estructuras y alguna marca acaba construyendo las plantas con una fabricación total.

 

Fresadora de asfalto

Hacia los años 70 se alcanza en España la madurez en la técnica de las mezclas bituminosas en caliente en España. Atrás quedan los firmes de macadam, revestidos o no con riegos con gravilla. Entre 1970 y 1980 se completa el plan REDIA. Este período se ve marcado por la crisis del petróleo que provoca una conmoción mundial. La crisis alcanza a nuestro país con una subida sin precedentes hasta entonces de los precios del crudo que modifica todos los planes sobre infraestructuras para el transporte. Una de las formas de ahorrar energía es el reciclaje de parte de los materiales existentes, áridos y asfalto, en las capas asfálticas deterioradas. Las máquinas fresadoras arrancan el material calentándolo con rayos infrarrojos, aunque produciendo una oxidación adicional del asfalto. La técnica se perfecciona con fresadoras en frío. Al terminar la fresadora su labor, la superficie queda en muy buenas condiciones para recibir las capas siguientes y se obtiene un producto aprovechable, por su tamaño, directamente en las plantas asfálticas. Cuando se fresan pavimentos muy deteriorados, es frecuente utilizar una machacadora para reducir el tamaño del material e introducirlo en las plantas asfálticas.

Uno de los problemas que surgen al aprovechar el material reciclado frío es su incompatibilidad con las plantas discontinuas. Ello obliga a sobrecalentar los áridos vírgenes añadidos, aunque ello oxida el asfalto y le hace perder volátiles. Además el calentamiento del material reciclado produce otros problemas, lo que obliga al uso de otro tipo de instalaciones: las plantas tambor secador-mezclador. Estas plantas permiten, mediante la alimentación central, el aporte del material reciclado en una zona protegida del contacto directo de la llama por la cortina del material virgen. Este hecho favorece que el material recuperado pueda reciclarse en proporciones importantes. Este tipo de plantas ofrecen aún más ventajas, entre ellas la sencillez, ya que sólo hay una dosificación, mientras que en las plantas de tipo discontinuo hay una dosificación en frío, luego una clasificación y posteriormente otra dosificación en caliente. Otra ventaja es el menor tamaño, por lo tanto el transporte es más fácil y económico. Son más fáciles de montar, de conservar y tienen un menor consumo energético, que en estos momentos, no debemos olvidar, es una de las grandes preocupaciones. Y por último son más baratas a la hora de adquirirlas que las discontinuas, por lo tanto presentan una mayor rentabilidad económica.

Posteriormente en España se llega a un descenso de la construcción que empieza a remontar en 1984, donde aumenta la construcción en un 10 – 12 %. A principios de los 80 se venden en España, no sin cierta dificultad, las primeras plantas de tambor secador-mezclador. Los fabricantes de plantas discontinuas alertan sobre los problemas que pueden producirse en las plantas tambor secador-mezclador, uno de los cuales es que, debido al escaso tiempo de permanencia de los áridos en el tambor dedicado al secado, éstos quedan con cierta humedad. Esto es respondido por los defensores de las plantas tambor secador-mezclador con la emulsión inversa, diciendo que, al emulsionarse la humedad residual con el asfalto, se facilita la adherencia y se producen mezclas de gran calidad, lo que implica que este tipo de plantas sean aceptadas. Los inconvenientes que presentan es la deficiente clasificación de los áridos, el exceso de filler sobrante que hay que eliminar y la pérdida de volátiles del betún, entre otros. El primer inconveniente es debido a que las canteras no están preparadas, lo que provoca que las plantas de áridos sean incapaces de abastecer al ritmo necesario.

CZWl8c-UMAE6-T_

 

En estos años el medio ambiente empieza a ser un tema central. Para evitar la contaminación atmosférica se procede a la instalación de filtros de mangas; hasta este momento se utilizan los sistemas de depuración por vía húmeda, pero no son capaces de solucionar la contaminación por polvo sobrante y volátiles. Estos filtros cumplen la normativa y se empiezan a utilizar, pero los volátiles y las pequeñas partículas de asfalto arrastradas por el tiro, impregnan las mangas, lo que obliga a costosos lavados y sustituciones. En las plantas tambor secador-mezclador es necesario utilizar un silo de producto terminado, para enlazar el proceso continuo de producción con el proceso discontinuo de carga de camiones. Estos silos pueden ser de aislamiento simplemente o pueden tener calentamiento, lo cual permite el almacenamiento de hasta dos días o más. Para almacenamientos prolongados se proveen atmósferas inertes para evitar la oxidación del aglomerado. Si los silos tienen gran altura se disponen de sistemas para evitar la segregación.

Por otro lado, los fabricantes de plantas discontinuas siguen mejorando para adaptarse al mercado. Además de mejorar en muchos aspectos como ser más fáciles de montar, de transportar, etc., ofrecen sobre todo la posibilidad de añadir aditivos en la mezcladora, algo que no es posible en las plantas tambor secador-mezclador por las altas temperaturas en la zona de mezclado. Frente a esta mejora, las plantas tambor secador-mezclador incorporan una mezcladora continua adicional a la sólida del tambor, para permitir la incorporación de aditivos. Otras trabajan en independizar la zona de secado y la zona de mezclado.

Los años 90 suponen un aumento muy fuerte en la licitación de carreteras en España, con el objetivo de alcanzar un nivel similar al resto de los países de la Unión Europea. La competencia entre plantas discontinuas y plantas tambor secador-mezclador sirvieron para mejorar de forma notable las mezclas asfálticas, aumentando las exigencias de fabricación, tanto técnicas como económicas, ecológicas y de seguridad. Hay que resolver problemas de contaminación atmosférica por polvo, por óxido de nitrógeno, contaminación acústica en los tambores, quemadores y ventiladores, y el aprovechamiento de productos reciclados con alimentación de aditivos. En cuanto a la seguridad: protección en las instalaciones eléctricas, en las partes en movimiento y en las zonas calientes susceptibles de producir quemaduras; atención a los depósitos de ligante y de combustible, y a los quemadores.

Referencias:

Kraemer, C.; Del Val, M.A.; Pardillo, J.M.; Rocci, S.; Romana, M.G.; Sánchez, V. (2004). Ingeniería de Carreteras. Vol II. Mc Graw Hill, Madrid.