UPV



Resultados de la búsqueda By Etiquetas: toma-de-decisiones


La optimización multiobjetivo y la toma de decisiones multicriterio en ingeniería estructural

By retocada por Yeza de la versión original de Alonsoquijano [Public domain], from Wikimedia Commons

Actualmente existe una tendencia clara hacia la evaluación de los impactos en todas las etapas del ciclo de vida de un producto. Esta tendencia ha llegado a los proyectos de estructuras, donde la evaluación de las repercusiones sociales, ambientales y económicas de las distintas alternativas no deriva en una decisión clara y unívoca de la mejor solución, sobre todo cuando los objetivos que se pretenden se encuentran enfrentados entre sí (Jato-Espino et al., 2014; Penadés-Plà et al., 2016; Zamarrón-Mieza et al., 2017; Sierra et al., 2018). El problema de seleccionar la mejor opción en el ámbito del proyecto de puentes ha supuesto una línea de investigación que se ha desarrollado enormemente en las últimas décadas. Balali et al. (2014) expusieron que los problemas relacionados con la toma de decisiones a lo largo del ciclo de vida de un puente se pueden enmarcar dentro de las siguientes fases: (a) proyecto, (b) construcción, y (c) uso y mantenimiento. Estas fases son las que se consideran habitualmente por otros autores (Malekly et al, 2010), que además añaden una última fase en el ciclo de vida de un puente: (d) reciclado o demolición.

Así pues, el proyecto de puentes se caracteriza por la presencia de múltiples objetivos de diseño -muchos contradictorios entre sí-, y la selección de la mejor opción entre distintas alternativas. La calidad, la constructibilidad, la seguridad, el impacto ambiental y el coste son los aspectos que normalmente se consideran en el diseño y la planificación de las operaciones de mantenimiento de un puente. La optimización multiobjetivo (Multi-Objective Optimization, MOO) resulta una herramienta útil cuando varios objetivos desean optimizarse simultáneamente. MOO proporciona un conjunto de soluciones eficaces, constituyendo la denominada frontera de Pareto. Las soluciones que forman parte de la frontera de Pareto no pueden mejorarse sin que empeore cualquier otra solución de dicho conjunto. Koumousis y Arsenis (1998) utilizaron MOO para el diseño de estructuras de hormigón. Liao et al (2011) revisaron los estudios que utilizaron metaheurísticas para problemas relacionados con el ciclo de vida de un proyecto de construcción. Por su parte, Zavala et al. (2013) estudiaron las metaheurísticas utilizadas en la optimización multiobjetivo de las estructuras.

Se pueden reseñar varios estudios que han utilizado la optimización multiobjetivo para comparar el diseño de estructuras de hormigón armado (Reinforced Concrete, RC) atendiendo a la reducción de las emisiones de gases de efecto invernadero y la reducción de costes (Martínez-Martín et al., 2012; García-Segura et al., 2014, 2016; Yepes et al, 2015). Payá et al. (2008) optimizaron pórticos de edificación de RC utilizando como función objetivo la constructibilidad, los costes económicos, el impacto ambiental y la seguridad general de la estructura. Martínez-Martín et al. (2012) optimizaron las pilas RC de un puente considerando como funciones objetivo el coste económico, la congestión de las armaduras pasivas y las emisiones de CO2. Yepes et al. (2015) incorporaron como función objetivo la vida útil en el diseño de una viga de sección en I confeccionada con hormigón de alta resistencia. García-Segura et al. (2014) incluyeron, además, un factor que evalúa la seguridad global en esa misma estructura.

A pesar de que los diseños deben garantizar cierta durabilidad, esta función objetivo suele utilizarse más en el ámbito de la gestión del mantenimiento de infraestructuras ya existentes. Así, Liu y Frangopol (2005) emplearon la optimización multiobjetivo en puentes deteriorados atendiendo a su estado, a los niveles de seguridad y al coste de mantenimiento de la estructura a lo largo del ciclo de vida. Sabatino et al. (2015) optimizaron las operaciones de mantenimiento de la estructura a lo largo de su ciclo de vida bajo los objetivos simultáneos de reducción del coste de mantenimiento y la utilidad mínima anual asociada con un indicador relacionado con la sostenibilidad. Torres-Machi et al. (2015) optimizaron la gestión sostenible de un pavimento considerando simultáneamente aspectos económicos, técnicos y ambientales.

Otro aspecto de interés en el ámbito de la investigación son los procedimientos que permiten seleccionar una solución de un conjunto de opciones posibles atendiendo a múltiples criterios. Las técnicas de toma de decisiones proporcionan un procedimiento racional a las decisiones basadas en cierta información, experiencia y juicio. Estas técnicas pueden clasificarse de acuerdo con la forma en la que el decisor articula sus preferencias. En un proceso “a priori”, los expertos asignan los pesos de cada criterio en la etapa inicial. El proceso “a posteriori” no requiere una definición previa de las preferencias. Por ejemplo, la optimización multiobjetivo genera una gama de soluciones óptimas, que se consideran igualmente buenas –frontera de Pareto-. En este caso, la toma de decisiones tiene lugar “a posteriori”. Este enfoque permite el análisis de las mejores soluciones según cada objetivo, lo cual proporciona información sobre la relación entre los objetivos y las soluciones. Jato-Espino et al. (2014) presentaron una revisión del desarrollo de los métodos de decisión multicriterio aplicados a la construcción. Existen numerosas técnicas de toma de decisiones multicriterio. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), VIKOR (Multi-criteria Optimization and Compromise Solution), MAUT (Multi-Attribute Utility Theory), AHP (Analytical Hierarchy Process), ANP (Analytical Network Process), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations), DEA (Data Envelopment Analysis), COPRAS (Complex Proportional Assessment) o QFD (Quality Function Deployment), son, entre otras, las más extensamente utilizadas.

Abu Dabous y Alkass (2010) presentaron una estructura jerárquica para la toma de decisiones en la gestión de puentes basados en MAUT y AHP. Sabatino et al. (2015) recurrieron a la teoría de utilidad de múltiples atributos para evaluar diversos aspectos de la sostenibilidad estructural considerando los riesgos asociados a los fallos en el puente y las actitudes frente al riesgo de los decisores. Ardeshir et al. (2014) emplearon un AHP difuso para seleccionar la ubicación para la construcción de un puente. Aghdaie et al. (2012) emplearon AHP y COPRAS para calcular la importancia relativa de los criterios y clasificar las alternativas en la selección de ubicaciones para construir nuevas pasarelas. Balali et al. (2014) seleccionaron el material, el procedimiento constructivo y la tipología estructural de un puente mediante la técnica PROMETHEE. Tanto VIKOR (Opricovic, 1998) como TOPSIS (Hwang y Yoon, 1981) son métodos que seleccionan soluciones basadas en la distancia más corta a la solución ideal. Opricovic y Tzeng (2004) compararon VIKTOR y TOPSIS y mostraron que presentan algunas diferencias en relación con la función de agregación y los efectos de normalización. La técnica difusa (fuzzy) (Zadeh, 1965) es una técnica útil para representar la incertidumbre inherente en la vida real. Joshi et al. (2004) evaluaron un conjunto de criterios para seleccionar la cimentacion más adecuada mediante fuzzy. AHP se combina con fuzzy (Jakiel y Fabianowski, 2015, Wang et al., 2001) para seleccionar entre distintas tipologías de puentes RC y alternativas de plataforma offshore, respectivamente. Abu Dabous y Alkass (2010) indicaron la dificultad en establecer la importancia relativa entre dos elementos con planteamientos deterministas, debido a la incertidumbre inherente al comportamiento de los diferentes elementos.

Se han propuesto muchos métodos para reducir el conjunto de soluciones procedentes de la frontera de Pareto (Hancock y Mattson, 2013). El método de la región de “rodilla” (Rachmawati y Srinivasan, 2009) constituye un método “a posteriori” que distingue los puntos para los cuales una mejora en un objetivo da lugar a un empeoramiento significativo de al menos otro objetivo. Una región de “rodilla” en el frente óptimo de Pareto, visualmente es una protuberancia convexa en la parte delantera, la cual es importante para la toma de decisiones en contextos prácticos, pues a menudo constituye el óptimo en equilibrio. Los métodos de agrupación se centran en ensamblar soluciones en grupos y seleccionar soluciones representativas (Saha y Bandyopadhyay, 2009). Los métodos de filtrado eliminan las soluciones de Pareto que ofrecen poca información al decisor (Mattson et al., 2004). Yepes et al. (2015a) propusieron un procedimiento sistemático “a posteriori” para filtrar la frontera de Pareto, a la vez que proporcionaba conocimiento relevante derivado del proceso de resolución. Esta técnica simplifica la elección de la solución preferente. Para ello se combinan matrices AHP aleatorias con la minimización de la distancia para seleccionar la solución más cercana a la ideal.

Se puede consultar una revisión bibliográfica reciente sobre la aplicación de las herramientas de decisión multicriterio al ciclo de vida de los puentes en el trabajo de Penadés-Plà et al. (2016). En este trabajo se comprueba cómo no existe una métrica universalmente aceptada para medir la diversidad de objetivos de todo tipo que se utilizan en la selección de la mejor opción de proyecto de un puente para un caso determinado. Para ello se analizaron un total de 77 artículos publicados desde 1991. El estudio aplicó un análisis multivariante de correspondencias (ver Figura). De este modo, se recogen los métodos de decisión multicriterio que debe aplicar el ingeniero para la selección de alternativas según la fase del ciclo de vida del puente, así como los criterios que se han considerado en dichos trabajos. La relación más obvia se ha identificado entre la lógica difusa y la fase de uso y mantenimiento. También se observa que el método AHP es ampliamente usado en las tres primeras fases del ciclo de vida de un puente. Finalmente la fase de demolición o reciclado es la menos estudiada, asociándose principalmente al método ANP.

Figura. Análisis de correspondencias entre la toma de decisiones y el ciclo de vida (Penadés-Plà et al., 2016)

Referencias:

Abu Dabous, S.; Alkass, S. (2010). A multi‐attribute ranking method for bridge management. Engineering, Construction and Architectural Management, 17(3), 282–291.

Aghdaie, M.H.; Zolfani, S.H.; Zavadskas, E.K. (2012). Prioritizing constructing projects of municipalities based on AHP and COPRAS-G: A case study about footbridges in Iran. The Baltic Journal of Road and Bridge Engineering, 7(2), 145–153.

Ardeshir, A.; Mohseni, N.; Behzadian, K.; Errington, M. (2014). Selection of a bridge construction site using Fuzzy Analytical Hierarchy Process in Geographic Information System. Arabian Journal for Science and Engineering, 39(6), 4405–4420.

Balali, V.; Mottaghi, A.; Shoghli, O.; Golabchi, M. (2014). Selection of appropriate material, construction technique, and structural system of bridges by use of multicriteria decision-making method. Transportation Research Record: Journal of the Transportation Research Board, 2431, 79–87.

García-Segura, T.; Yepes, V.; Alcalá, J. (2014). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.

García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336.

Hancock, B.J.; Mattson, C. A. (2013). The smart normal constraint method for directly generating a smart Pareto set. Structural and Multidisciplinary Optimization, 48(4), 763–775.

Hwang, C.L.; Yoon, K. (1981). Multiple Attributes Decision Making Methods and Applications. Springer, Berlin Heidelberg.

Jakiel, P.; Fabianowski, D. (2015). FAHP model used for assessment of highway RC bridge structural and technological arrangements. Expert Systems with Applications, 42(8), 4054–4061.

Jato-Espino, D.; Castillo-López, E.; Rodríguez-Hernández, J.; Canteras-Jordana, J.C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction, 45, 151–162.

Joshi, P.K.; Sharma, P.C.; Upadhyay, S.; Sharma, S. (2004). Multi objective fuzzy decision making approach for selection of type of caisson for bridge foundation. Indian Journal Pure Application Mathematics.

Koumousis, V.K., Arsenis, S.J. (1998). Genetic Algorithms in Optimal Detailed Design of Reinforced Concrete Members. Computer-Aided Civil and Infrastructure Engineering, 13(1), 43–52.

Liao, T.W.; Egbelu, P.J.; Sarker, B.R.; Leu, S.S. (2011). Metaheuristics for project and construction management – A state-of-the-art review. Automation in Construction, 20(5), 491–505.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Malekly, H.; Meysam Mousavi, S.; Hashemi, H. (2010). A fuzzy integrated methodology for evaluating conceptual bridge design, Expert Systems with Applications, 37, 4910-4920.

Martínez-Martín, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University: Science A, 13(6), 420–432.

Mattson, C.A.; Mullur, A.A.; Messac, A. (2004). Smart Pareto filter: obtaining a minimal representation of multiobjective design space. Engineering Optimization, 36(6), 721–740.

Opricovic, S. (1998). Multicriteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, Belgrade.

Opricovic, S.; Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.

Payá, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2008). Multiobjective optimization of reinforced concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596–610.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.

Rachmawati, L.; Srinivasan, D. (2009). Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Transactions on Evolutionary Computation, 13(4), 810–824.

Sabatino, S.; Frangopol, D.M.; Dong, Y. (2015). Sustainability-informed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude. Engineering Structures, 102, 310–321.

Saha, S.; Bandyopadhyay, S. (2009). A new multiobjective clustering technique based on the concepts of stability and symmetry. Knowledge and Information Systems, 23(1), 1–27.

Sierra, L.A.; Yepes, V.; Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.

Torres-Machi, C.; Chamorro, A.; Pellicer, E.; Yepes, V.; Videla, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record: Journal of the Transportation Research Board, 2523, 56–63.

Wang, H.L.; Zhang, Z.; Qin, S.F.; Huang, C.L. (2001). Fuzzy optimum model of semi-structural decision for lectotype. China Ocean Engineering, 15(4), 453–466.

Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.

Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.

Zavala, G.R.; Nebro, A.J.; Luna, F.; Coello Coello, C. A. (2013). A survey of multi-objective metaheuristics applied to structural optimization. Structural and Multidisciplinary Optimization, 49(4), 537–558.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

28 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  |  

Un algoritmo heurístico basado en el jazz ayuda a decidir en qué infraestructuras es prioritario invertir

By World-Telegram staff photographer [Public domain], via Wikimedia Commons

Investigadores de la Universitat Politècnica de València y de la Universidad de La Frontera (Chile) han elaborado un algoritmo, basado en la armonía musical del jazz, que determina qué inversión es más adecuada

 

La metodología ya se ha aplicado en El Salvador, donde ha permitido priorizar las inversiones en carreteras

 

 

 

 

 

Las administraciones públicas se enfrentan continuamente ante problemas de gran calado social cuando tienen que invertir grandes sumas de dinero en infraestructuras clave, como puede ser una carretera, un hospital o una universidad.

Ahora, un equipo de investigadores de la Universitat Politècnica de València y de la Universidad de La Frontera (Chile) ha desarrollado un novedoso estudio que demuestra que el jazz puede ayudarles a decidir en qué infraestructuras es mejor invertir el dinero, para favorecer así la calidad de vida de los ciudadanos. Su trabajo ha sido publicado en el Journal of Cleaner Production.

La metodología diseñada por el equipo de científicos españoles y chilenos se basa en la inteligencia subyacente en la armonía musical del jazz.  “La armonía nos ha servido de inspiración para elaborar un algoritmo que es capaz de determinar el impacto de una determinada decisión –invertir en un aeropuerto o en una línea de AVE, por ejemplo – tanto a corto como a medio y largo plazo”, apunta Víctor Yepes, investigador del Instituto Universitario de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València.

Según explica el profesor Yepes, el algoritmo de búsqueda armónica (harmony search, en inglés) se basa en el proceso de la improvisación musical. “No todo el mundo posee habilidad para improvisar música, pues es un proceso que requiere experiencia y conocimiento previo de las armonías. Por ejemplo, en el jazz, el músico compone una nueva melodía basándose en sus conocimientos musicales para seleccionar nuevas notas aleatoriamente. Si el conjunto de notas tocadas se consideran una buena armonía, esta se guarda en la memoria de cada músico, incrementando la posibilidad de hacer una buena armonía la próxima vez”, señala el investigador de la UPV.

El algoritmo desarrollado por los investigadores españoles y chilenos hace algo parecido. Cada melodía se define por un vector, al igual que cada infraestructura que debe ser elegida. Cada nueva iteración del algoritmo elige una melodía (infraestructura) parecida que, si es mejor, se añade al repertorio. “Al final del proceso, el algoritmo es capaz de definir una melodía (infraestructura) de calidad muy alta. Dicho de otro modo, la inteligencia del algoritmo permite ayudar a elegir la mejor infraestructura posible considerando aspectos tan diversos como la empleabilidad, la educación, la sanidad, el confort o la calidad de vida”, apunta Víctor Yepes.

Más objetivo

El método permite minimizar los errores al decidir qué tipo de inversión es la más adecuada, haciendo más objetiva la decisión de las autoridades, al considerar no solo los efectos económicos y medioambientales, sino también los sociales, que son más difíciles de evaluar.

“Los factores económicos o medioambientales condicionan el tipo de decisión. Pero los efectos en la sociedad a corto y largo plazo pueden ser irreversibles. Muchos son los ejemplos de malas decisiones con graves repercusiones: aeropuertos infrautilizados, líneas de alta velocidad innecesarias, altas listas de espera en hospitales, altísimos porcentajes de paro, etc. Este método ayudaría a acabar con estas situaciones”, destaca Víctor Yepes.

El Salvador

La metodología se ha aplicado ya en El Salvador, donde ha permitido priorizar las inversiones en carreteras, maximizando los beneficios tanto a corto como a largo plazo. “La trascendencia del método desarrollado es su aplicabilidad a cualquier contexto y territorio, lo que permite mejorar las condiciones de vida de amplios sectores sociales con ayuda de la inteligencia subyacente en la música”, concluye Víctor Yepes.

Os dejo también una entrevista radiofónica en À Punt Ràdio:

 

Agradecimientos:

Luis Zurano, de la Unidad de Cultura Científica e Innovación de la Universitat Politècnica de València

Referencias:

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140

http://www.upv.es/noticias-upv/noticia-9959-algoritmo-de-bu-es.html

http://www.expansion.com/sociedad/2018/04/21/5adb576e468aebd0578b466b.html

http://www.cope.es/noticias/cultura/jazz-ayuda-decidir-que-infraestructuras-prioritario-invertir_206188

http://www.lavanguardia.com/vida/20180421/442818278872/el-jazz-ayuda-a-decidir-en-que-infraestructuras-es-prioritario-invertir.html

http://agencias.abc.es/agencias/noticia.asp?noticia=2797859

https://www.elconfidencial.com/ultima-hora-en-vivo/2018-04-21/el-jazz-ayuda-a-decidir-en-que-infraestructuras-es-prioritario-invertir_1499304/

https://www.efe.com/efe/comunitat-valenciana/portada/el-jazz-ayuda-a-decidir-en-que-infraestructuras-es-prioritario-invertir/50000877-3591711

https://www.diarilaveu.com/noticia/81405/algoritme-inspirat-jazz-decidir-infraestructures

Un algoritmo heurístico basado en el jazz ayuda a decidir en qué infraestructuras es prioritario invertir

23 abril, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

La perspectiva del ciclo de vida de los puentes

Fotografía: Xosé Manuel López Gallego

La sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento (Yepes et al., 2016; Torres-Machí et al., 2017; Zastrow et al., 2017). Los puentes se proyectan para ser funcionales durante muchos años, por lo que deben considerarse todos los aspectos relacionados con su ciclo de vida: proyecto, construcción, operación y desmantelamiento. Es por ello que la inversión debe contemplar el deterioro del puente y su mantenimiento para mantener la estructura en buenas condiciones el máximo tiempo posible. Una revisión reciente de la aplicación de los métodos de decisión multicriterio a los puentes puede consultarse en el trabajo de Penadés-Plà et al. (2016).

Sarma y Adeli (1998) revisaron los estudios realizados sobre la optimización de estructuras de hormigón y detectaron cierta carencia en cuanto a la investigación en el ámbito de la optimización de las estructuras que considere el coste de todo el ciclo de vida, y no solo el coste inicial de su construcción. Frangopol y Kim (2011) también reivindicaron la importancia de extender la vida útil de las estructuras, pues muchas de ellas empiezan a mostrar señales significativas de deterioro antes de lo esperado. Para prolongar la vida de las estructuras deterioradas, se pueden aplicar medidas de mantenimiento que retrasen la propagación de los daños, o bien reducir el grado de dicho daño (Kim et al., 2013). Frangopol y Soliman (2016) describieron las acciones necesarias para la planificación eficaz del mantenimiento para maximizar las prestaciones de la estructura durante el ciclo de vida bajo restricciones presupuestarias. García-Segura et al. (2017) han optimizado las labores de mantenimiento de puentes pretensados desde el punto de vista de sostenibilidad económica, social y ambiental partiendo de diseños optimizados con múltiples objetivos (económico, durabilidad y seguridad).

El mantenimiento de los elementos de los puentes de grandes luces situados en zonas costeras deteriorados por corrosión representa la mayor parte del coste del ciclo de vida de estas estructuras (Cheung et al., 2009). Kendall et al. (2008) propusieron un modelo que integraba el análisis del ciclo de vida y los costes asociados desde la perspectiva de la sostenibilidad. Lee et al., (2006) evaluaron la fiabilidad de un puente cuando la corrosión y el tráfico de camiones pesados afectan a la estructura. Propusieron una metodología realista de los costes a lo largo del ciclo de vida, incluyendo los costes iniciales, los de mantenimiento, los esperados en la rehabilitación, las pérdidas por accidentes, los costes del usuario de la carretera y las pérdidas socioeconómicas indirectas. Penadés-Plà et al. (2017, 2018) han estudiado el ciclo de vida de puentes de sección en cajón y puentes de vigas artesa. Navarro et al. (2018) han analizado en un trabajo reciente el coste del ciclo de vida de las estrategias de mantenimiento en puentes pretensados expuestos al ataque de clorhídricos.

Neves y Frangopol (2005) indicaron cómo la evaluación de la seguridad de una estructura constituye un indicador básico para medir su rendimiento, pues el estado de la estructura no es un indicador preciso para evaluar la seguridad y la funcionalidad de un puente. Liu y Frangopol (2005) estudiaron la mejor planificación del mantenimiento de un puente durante su ciclo de vida mediante una optimización multiobjetivo de la vida útil, el nivel de seguridad y el coste del mantenimiento. Como se puede ver, los objetivos de rendimiento estructural y de economía se han añadido a los aspectos sociales y ambientales de las acciones de mantenimiento de las estructuras (Dong et al., 2013; Sierra et al., 2016; García-Segura et al., 2017).

Referencias:

Cheung, M. M.; Zhao, J.; Chan, Y. B. (2009). Service life prediction of RC bridge structures exposed to chloride environments. Journal of Bridge Engineering, 14(3), 164–178.

Dong, Y.; Frangopol, D.M.; Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467.

Frangopol, D.M.; Kim, S. (2011). Service life, reliability and maintenance of civil structures. In L. S. Lee; V. Karbari (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 145–178). Elsevier.

Frangopol, D.M.; Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20.

García-Segura, T.;  Yepes, V.; Frangopol, D.M.; Yang, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391.

Kendall, A.; Keoleian, G.A.; Helfand, G. E. (2008). Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications. Journal of Infrastructure Systems, 14(3), 214–222.

Kim, S.; Frangopol, D.M.; Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447.

Lee, K.M.; Cho, H.N.; Cha, C.J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252–1265.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Navarro, I.J.; Yepes, V.; Martí, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845.

Neves, L.C.; Frangopol, D.M. (2005). Condition, safety and cost profiles for deteriorating structures with emphasis on bridges. Reliability Engineering & System Safety, 89(2), 185–198.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.

Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.

Torres-Machí, C.; Pellicer, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.

Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La sostenibilidad en el ámbito de la construcción

La Comisión Mundial sobre el Medio Ambiente y el Desarrollo “World Commission on Environment and Development” (WCED) propuso mantener a largo plazo los recursos necesarios para satisfacer las necesidades futuras (Butlin, 1989). Además, se señaló que para conseguir un desarrollo sostenible se debía mantener un equilibrio entre los pilares económicos, ambientales y sociales. Desde entonces, los desafíos para conseguir un desarrollo sostenible se han llevado al campo de la construcción en diferentes líneas de investigación. La construcción constituye uno de los principales sectores emisores de gases de efecto invernadero (Liu et al., 2013). La industria de la construcción, junto con sus industrias auxiliares, pasa por ser uno de los mayores consumidores de recursos naturales, tanto renovables como no renovables, que está alterando negativamente el medio ambiente. Agota 2/5 partes de los áridos y 1/4 de la madera, y consume el 40 % de la energía total y el 16 % de agua al año (Lippiatt, 1999; Chong et al., 2009). El consumo de materiales crece constantemente, con más de 23 mil millones de toneladas de hormigón producido anualmente (Schokker, 2010; WBCSD, 2006). En 2010, de acuerdo con la International Cement Review, la producción mundial de cemento se elevó a alrededor de 3,3 millones de toneladas/año, lo que significa un aumento más del 100% en casi 10 años. La fabricación de cemento Portland genera grandes cantidades de CO2 debido a las altas demandas de energía necesarias para la fabricación y calcinación de la piedra caliza. La producción mundial de cemento llegó a 1,6 mil millones de toneladas/año en 2001, lo que corresponde a aproximadamente el 7 % de la cantidad mundial de dióxido de carbono liberado a la atmósfera (Bremner, 2001). Otros estudios indican que la contribución de la industria cementera a las emisiones de gases de efecto invernadero supera el 5% del total (Worrell et al., 2001). En Australia, para mantener la demanda en la construcción, se necesitan cada año aproximadamente 30 millones de toneladas de productos, más del 56 % de esta cantidad es hormigón, y el 6%, acero (Walker-Morison et al., 2007). En 2001, España tuvo la mayor tasa de consumo de hormigón en Europa, con 1,76 m3 de hormigón per cápita por año (ECO-SERVE, 2004). En 2007, la producción de clinker alcanzó alrededor de 55 millones de toneladas en España. Sin embargo, este número se redujo a 14,1 millones de toneladas en 2013 como consecuencia de la crisis financiera (Oficemen, 2016).

Existen recomendaciones para reducir el impacto ambiental de las estructuras de hormigón (fib, 2012). La citada guía considera el ciclo completo de las fases del ciclo de vida, de la cuna a la tumba. La correcta selección de las materias primas, así como los aditivos y adiciones, constituye una de las claves para reducir el impacto ambiental. Otra forma de reducir los impactos pasa por el uso de procesos más respetuosos con el medio ambiente en la producción y el transporte del hormigón. En esta guía también se habla de optimizar estructuras basándose en indicadores ambientales y de desempeño. Por último, concluye que las estructuras deben optimizarse comparando diferentes alternativas y teniendo en cuenta los indicadores ambientales, especialmente las emisiones de CO2, pues pasa por ser uno de los factores más importantes para evaluar el impacto ambiental. Además, fib (2012) indica cómo la consideración del ciclo de vida completo de una estructura antes de iniciar su construcción puede conseguir reducciones significativas de CO2.

Por tanto, la sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento. Las investigaciones se centran en proporcionar recomendaciones para seleccionar materiales estructurales basados en indicadores económicos, ambientales y de constructibilidad (Zhong & Wu, 2015), utilizando hormigón y acero reciclado (Collins, 2010, Yellishetty et al., 2011), empleando materiales novedosos como cementos con baja huella de carbono y adiciones como substitutos del clínker (García-Segura et al., 2014a; Gartner, 2004), evaluando las emisiones del ciclo de vida de las estructuras de hormigón (Barandica et al., 2013; Tae et al., 2011), reduciendo las emisiones de CO2 de la construcción (2003), optimizando el proceso de producción de cemento (Castañón et al., 2015), estimando la energía consumida en los proyectos de construcción (Wang y Shen, 2013; Wang et al., 2012) e identificando la mejor planificación del mantenimiento (Liu y Frangopol, 2005, Yang et al., 2006), entre otros. En las referencias también hemos dejado alguno de nuestros trabajos en este sentido.

Referencias:

  • Barandica, J.M.; Fernández-Sánchez, G.; Berzosa, Á.; Delgado, J.A.; Acosta, F.J. (2013). Applying life cycle thinking to reduce greenhouse gas emissions from road projects. Journal of Cleaner Production, 57, 79–91.
  • Bremner, T.W. (2001). Environmental aspects of concrete: problems and solutions. In: Proceedings of first all-Russian conference on concrete and reinforced concrete, Moscow, Russia.
  • Butlin, J. (1989). Our common future. By World commission on environment and development. (London, Oxford University Press, 1987, pp.383). Journal of International Development, 1(2), 284–287.
  • Castañón, A.M.; García-Granda, S.; Guerrero, A.; Lorenzo, M.P.; Angulo, S. (2015). Energy and environmental savings via optimisation of the production process at a Spanish cement factory. Journal of Cleaner Production, 98, 47–52.
  • Chong, W.K.; Kumar, S.; Haas, C.T.; Beheiry, S.M.A.; Coplen, L.; Oey, M. (2009). Understanding and interpreting baseline perceptions of sustainability in construction among civil engineers in the United States. Journal of Management in Engineering, 25(3):143–154.
  • Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.
  • ECO-SERVE. (2004). Baseline report on sustainable aggregate and concrete industries in Europe. European Commission, Hellerup.
  • fib. International Federation for Structural Concrete. Task Group 3.8, T. for green concrete structures. (2012). Guidelines for green concrete structures. International Federation for Structural Concrete. Task Group 3.8, Technologies for green concrete structures.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014b). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498.
  • Lippiatt, B.C. (1999). Selecting cost effective green building products: BEES approach. Journal of Construction Engineering and Management, 125:448–455.
  • Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.
  • Liu, S.; Tao, R.; Tam, C.M. (2013). Optimizing cost and CO2 emission for construction projects using particle swarm optimization. Habitat International, 37:155–162.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Oficemen. (2012). Annual report of Spanish cement sector 2016. Annual report of Spanish cement sector 2016. Retrieved from https://www.oficemen.com/reportajePag.asp?id_rep=1619
  • Schokker A.J. (2010). The sustainable concrete guide: strategies and examples. 1 ed. U.S.G.C. Council; 2010. Michigan: U.S. Green Concrete Council.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5), 05015020.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2017a). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53.
  • Sierra, L.A.; Yepes, V.; Pellicer, E. (2017b). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review ,67:61-72. .
  • Tae, S.; Baek, C.; Shin, S. (2011). Life cycle CO2 evaluation on reinforced concrete structures with high-strength concrete. Environmental Impact Assessment Review, 31(3), 253–260.
  • Walker-Morison, A.; Grant, T.; McAlister, S. (2007). The environmental impact of building materials. Environment design guide. PRO 7.
  • Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173.
  • World Business Council for Sustainable Development (WBCSD) (2006). Cement Industry Energy and CO2 Performance: Getting the Numbers Right; Geneva: World Business Council for Sustainable Development, (WBCSD).
  • Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26, 303–329.
  • Yang, S.I.; Frangopol, D.M.; Kawakami, Y.; Neves, L. C. (2006). The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs. Reliability Engineering & System Safety, 91(6), 698–705.
  • Yellishetty, M.; Mudd, G.M.; Ranjith, P.G.; Tharumarajah, A. (2011). Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental Science & Policy, 14(6), 650–663.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
  • Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.
  • Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.
  • Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140, 1037-1048.
  • Zhong, Y.; Wu, P. (2015). Economic sustainability, environmental sustainability and constructability indicators related to concrete- and steel-projects. Journal of Cleaner Production, 108, 748–756.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

23 febrero, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

¿Qué se estudia en la asignatura Modelos Predictivos y de Optimización de Estructuras de Hormigón?

El programa de la asignatura Modelos Predictivos y de Optimización de Estructuras de Hormigón se ha diseñado basándose en el programa presentado en el departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil por parte de la unidad docente de “Procedimientos de Construcción y Gestión de Obras”, al que está adscrita en la actualidad la asignatura, y aprobado por el Consejo del Departamento. Las líneas maestras de los contenidos se definieron previamente en la Memoria de Verificación del título oficial de “Máster Universitario en Ingeniería del Hormigón por la Universitat Politècnica de València”. Se trata de una de las asignaturas de la materia “Análisis de estructuras de hormigón”, siendo obligatoria para todos los alumnos de esta titulación y se imparte en el primer cuatrimestre del primer curso. La asignación de créditos ECTS es de 5,0, repartidos en 3,0 créditos de teoría y 2,0 de prácticas, de acuerdo con el Plan de Estudios actualmente en vigor en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil.

Resultados de aprendizaje

Los resultados de aprendizaje de la asignatura se definen a partir de las competencias y de los contenidos (Yepes, 2017). Como resultado de aprendizaje general, al terminar con éxito esta asignatura, los estudiantes serán capaces de “comprender los diferentes métodos predictivos y procedimientos de optimización de estructuras de hormigón de modo que dispongan de las herramientas necesarias para la toma de decisiones en el ámbito del proyecto, construcción y mantenimiento de estas estructuras considerando los aspectos de sostenibilidad económica, social y ambiental”.

En relación con los resultados específicos de aprendizaje de la asignatura, tenemos los siguientes:

  • RA1    Seleccionar y aplicar las distintas técnicas procedentes de la estadística, de la investigación operativa y de la minería de datos en la toma de decisiones en el ámbito del hormigón
  • RA2    Modelizar un problema de optimización de una estructura de hormigón y resolverlo mediante algoritmos heurísticos secuenciales y poblacionales
  • RA3    Aplicar la inferencia estadística multidimensional para interpretar el comportamiento de las variables cualitativas y cuantitativas en el ámbito del hormigón
  • RA4    Formular modelos lineales de regresión múltiple e interpretar su validez límites predictivos
  • RA5    Emplear técnicas de diseño de experimentos para conocer los efectos principales y las interacciones entre los distintos factores que afectan a una variable de respuesta en el ámbito del hormigón
  • RA6    Optimizar el comportamiento de una estructura de hormigón utilizando la metodología de la superficie de respuesta
  • RA7    Aplicar redes neuronales artificiales en la predicción de sistemas altamente no lineales en el ámbito del hormigón
  • RA8    Aplicar técnicas de decisión multicriterio en la selección de la mejor tipología estructural considerando aspectos económicos, ambientales y sociales
  • RA9    Elegir la mejor opción de una frontera de Pareto tras aplicar técnicas de decisión multicriterio
  • RA10 Aplicar programas estadísticos avanzados, tales como SPSS o Minitab, y otros como Matlab, Sap y Excel en la predicción de variables de respuesta y en problemas de optimización en el ámbito del hormigón

 

Conocimientos previos

Los alumnos que cursan esta asignatura, tienen diversas procedencias: Ingeniería de Caminos, Canales y Puertos, Ingeniería Industrial, Arquitectura, Ingeniería Agronómica, Licenciado en Químicas, Ingeniería Geológica, Ingeniería Técnica de Obras Públicas, Ingeniería Técnica Industrial, o los actuales grados en ingeniería civil, de obras públicas o máster en ingeniería de caminos, canales y puertos, entre otros. Además los alumnos, en un porcentaje significativo, proceden de universidades latinoamericanas o europeas. Como es fácil de comprender, los alumnos tienen formaciones muy diferentes, habiendo estudiado las asignaturas relacionadas con el hormigón, con los métodos numéricos o la estadística de forma muy diversa, con niveles de adquisición de conocimientos descompensados. Esta situación implica cierta nivelación en cada uno de los temas, de forma que se adquieran los niveles básicos de comprensión de los contenidos de forma progresiva con el objetivo que todos los alumnos adquieran las competencias y los resultados de aprendizaje previstos.

Según la Guía Docente de la asignatura, los conocimientos recomendados versarían sobre estadística y sobre lenguajes de programación (MATLAB, SPSS, MINITAB, SAP, etc.), aunque no son imprescindibles.  Además, resultan necesarios unos conocimientos básicos sobre el hormigón y su análisis como material estructural. Ello obliga al profesor a sintetizar el contenido previo para la correcta comprensión de la asignatura.

 

Programa resumido de la asignatura

La asignatura se desarrolla siguiendo un programa que tiene en cuenta los resultados de aprendizaje antes definidos, las actividades formativas y el sistema propuesto para la evaluación. Ello permite organizar la asignatura en 25 temas y sus prácticas de informática asociadas.

  • Tema 1. La investigación operativa y la toma de decisiones
  • Tema 2. La modelización de un problema estructural de hormigón
  • Tema 3. Algoritmos y problemas de decisión
  • Tema 4. Optimización y programación matemática
  • Tema 5. Optimización combinatoria y algoritmos heurísticos
  • Tema 6. Clasificación y uso de heurísticas y metaheurísticas
  • Tema 7. Búsqueda local de máximo gradiente
  • Tema 8. Recocido simulado, aceptación por umbrales y búsqueda tabú
  • Tema 9. Sistemas de inteligencia de enjambre
  • Tema 10. Programación evolutiva y estrategias evolutivas
  • Tema 11. Algoritmos genéticos y meméticos
  • Tema 12. GRASP, búsqueda dispersa y búsqueda de la armonía
  • Tema 13. Heurísticas de optimización multiobjetivo
  • Tema 14. Inferencia estadística bidimensional
  • Tema 15. Inferencia estadística multidimensional
  • Tema 16. Modelos lineales de regresión múltiple
  • Tema 17. Modelos de ecuaciones estructurales
  • Tema 18. Diseño de experimentos
  • Tema 19. Optimización mediante la metodología de superficie de respuesta
  • Tema 20. Modelos Kriging y diseños robustos
  • Tema 21. Redes neuronales artificiales
  • Tema 22. Programación genética y lógica difusa
  • Tema 23. La toma de decisiones en el ciclo de vida de una estructura de hormigón
  • Tema 24. Técnicas de decisión multicriterio continua
  • Tema 25. Técnicas de decisión multicriterio discreta

 

 

Los 25 temas se encuentran agrupados en 4 bloques temáticos. El primero de los bloques es introductorio. Consta de 5 temas que presentan al alumno la aplicación de las técnicas de la investigación científica en el ámbito de la toma de decisiones en las empresas a través de lo que se conoce como investigación operativa. Se introduce al alumno en la forma de abordar los problemas reales en el ámbito de las estructuras de hormigón a través de modelos de distinto tipo. Se describen los componentes básicos de un problema de optimización: función objetivo, variables de decisión, parámetros y restricciones. A continuación se describe el concepto de algoritmo y complejidad algorítmica para explicar las limitaciones de la programación matemática en la resolución de problemas reales, lo cual da paso a la introducción de los algoritmos heurísticos como aproximaciones en la búsqueda de óptimos locales de calidad en tiempos de cálculo razonables.

El segundo de los bloques se centra en la descripción y aplicación de la optimización heurística en las estructuras de hormigón. Se describe paso a paso tanto las técnicas de búsqueda secuencial de máximo gradiente y de “hill-climbing” como otras técnicas poblacionales basadas en los algoritmos genéticos o en la inteligencia de partículas. Este bloque termina con una explicación de la optimización multiobjetivo y la construcción de fronteras de Pareto de calidad en el caso de confluencia de funciones objetivo contrapuestas.

El bloque tercero se centra específicamente en los modelos predictivos de las estructuras de hormigón. Se hace un repaso de las técnicas de inferencia bidimensional y multidimensional para pasar a los modelos predictivos lineales, tanto los basados en regresiones múltiples como en los modelos de ecuaciones estructurales. Posteriormente se aborda el diseño de experimentos como técnicas estadísticas básicas en la predicción de los efectos principales y las interacciones de los distintos factores que afectan a un problema de hormigón. El estudio de los diseños factoriales lleva directamente al planteamiento de la metodología de la superficie de respuesta, que permite realizar la optimización de la respuesta. Tanto la metodología de la superficie de respuesta como los modelos Kriging o las redes neuronales, constituyen metamodelos que se explican como herramientas muy útiles para simplificar el espacio de soluciones de los problemas reales del hormigón estructural. En particular, los modelos Kriging permiten el diseño robusto óptimo, es decir, aquel que se comporta bien incluso ante cambios en las variables o en las condiciones de contorno. Para los sistemas altamente complejos, se explican las redes neuronales artificiales que, además, permiten su uso como metamodelos o como parte de un algoritmo heurístico de optimización. La programación genética y la lógica difusa también se explican en una lección como herramientas posibles en el ámbito de los modelos predictivos y cuando los parámetros o restricciones del problema no son determinísticos.

El cuarto bloque se dedica a la toma de decisión multicriterio en las estructuras de hormigón. A los alumnos se les explica cómo, antes de realizar una optimización multiobjetivo, es necesario seleccionar la mejor tipología estructural con base en criterios que no siempre son objetivos: economía, plazo, estética, medioambiente, aspectos sociales, durabilidad, etc. Se introducen las distintas técnicas de toma de decisión multicriterio y se comentan su empleo, incluso, para la obtención de pesos objetivos de criterios que pueden ser incluso subjetivo, o bien para la selección de la mejor opción dentro de una frontera de Pareto tras una optimización multiobjetivo.

En la Tabla siguiente se muestra el programa resumido de la asignatura “Modelos Predictivos y de Optimización de Estructuras de Hormigón” (T, Teoría; P, Prácticas informáticas), indicándose el número de horas asignadas a cada tema.

Referencias:

YEPES, V. (2017). Proyecto docente. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 642 pp.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

¿Cuánto cuesta un jugador de fútbol? Usemos un método científico

El estadio Milenium de Cardiff acoge la final de la Liga de Campeones en 2017

Hoy se juega la final de la Champions. Es la excusa perfecta para comentar un método basado en la toma de decisiones AHP que permite valorar y priorizar a los jugadores de fútbol. No entraré en si son o no abusivos los sueldos de los jugadores. Lo bien cierto es que determinados deportes mueven cifras millonarias y tienen una importancia económica de primer orden.

Es por ello que, simplemente os paso un curso completo on-line donde se explica paso a paso la técnica. Mi objetivo es que la podáis utilizar en otros ámbitos de vuestra profesión o en problemas cotidianos. Veréis que no es tan difícil.

El curso se llama “Valoración y priorización de futbolistas OnLine” y es de la Universitat Politècnica de València. Basta que vayáis al siguiente enlace:

3 junio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

La aplicación de la toma de decisiones multicriterio a la gestión de presas

Presa de Aldeadávila. Wikipedia

La gestión del mantenimiento de las presas existentes constituye un proceso complejo que requiere la aplicación de la toma de decisiones atendiendo a  múltiples criterios para evitar las severas consecuencias sociales, económicas y medioambientales que pueden acarrear. A continuación os dejo un artículo científico que nos acaban de publicar al respecto. Realiza una revisión profunda del estado del arte en la materia. Espero que os sea de interés.

Hasta el 17 de marzo de 2017 te puedes descargar GRATUITAMENTE el artículo en el siguiente enlace:

https://authors.elsevier.com/a/1USLM3QCo9NAmx

El artículo completo lo podéis encontrar aquí:  http://www.sciencedirect.com/science/article/pii/S0959652617301051

 

Abstract:

Decisions for aging-dam management requires a transparent process to prevent the dam failure, thus to avoid severe consequences in socio-economic and environmental terms. Multiple criteria analysis arose to model complex problems like this. This paper reviews specific problems, applications and Multi-Criteria Decision Making techniques for dam management. Multi-Attribute Decision Making techniques had a major presence under the single approach, specially the Analytic Hierarchy Process, and its combination with Technique for Order of Preference by Similarity to Ideal Solution was prominent under the hybrid approach; while a high variety of complementary techniques was identified. A growing hybridization and fuzzification are the two most relevant trends observed. The integration of stakeholders within the decision making process and the inclusion of trade-offs and interactions between components within the evaluation model must receive a deeper exploration. Despite the progressive consolidation of Multi-Criteria Decision Making in dam management, further research is required to differentiate between rational and intuitive decision processes. Additionally, the need to address benefits, opportunities, costs and risks related to repair, upgrading or removal measures in aging dams suggests the Analytic Network Process, not yet explored under this approach, as an interesting path worth investigating.

Keywords:

  • Ageing dams;
  • Dam management;
  • Decision making;
  • Multiple criteria analysis;
  • Risk

Referencia:

ZAMARRÓN-MIEZA, I.; YEPES, V.; MORENO-JIMÉNEZ, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230. http://www.sciencedirect.com/science/article/pii/S0959652617301051

26 enero, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Aplicación de los métodos de decisión multicriterio al diseño sostenible de puentes

Puente en cajón postesado sobre el Turia (Quart de Poblet). Proyectado por Javier Manterola y construído por Dragados y Construcciones en 1991.

Actualmente existe una tendencia clara hacia la sostenibilidad en los proyectos de estructuras, para lo cual es necesario equilibrar los criterios que apoyan esta sostenibilidad: la economía, el medio ambiente y la sociedad. Estos pilares básicos presentan objetivos diferentes y habitualmente enfrentados entre sí. Esta realidad conduce hacia la necesidad de adoptar procesos de toma de decisiones que permitan alumbrar soluciones capaces de satisfacer, de la mejor manera posible, los principios de sostenibilidad citados. Los puentes forman parte de las infraestructuras básicas de comunicación entre los distintos territorios. Por lo tanto, constituye una necesidad ineludible garantizar la sostenibilidad de este tipo de estructuras a lo largo de su ciclo de vida.

A continuación se presenta un artículo recién publicado que tiene como objetivo principal revisar la aplicación de las técnicas de decisión multicriterio al caso de los puentes. Esta investigación se enmarca dentro del proyecto BRIDLIFE (BIA2014-56574-R), en el cual participan los autores. La revisión se ha realizado atendiendo a las fases del ciclo de vida del puente, teniendo en cuenta aquellos trabajos que proponen soluciones y realizan un proceso directo de toma de decisiones respecto a estas soluciones. Asimismo, también se han considerado aquellas aportaciones que, a pesar de no realizar una selección entre varias soluciones, aplican un método de toma de decisiones para evaluar una solución en particular. La relevancia de estos trabajos estriba en la forma en que se realizan los procesos de evaluación, los cuales constituyen la piedra angular para el proyecto de un puente desde el punto de vista de la sostenibilidad, atendiendo a todas y cada una de las fases de su ciclo de vida.

Este artículo lo podéis descargar en el siguiente enlace: http://www.mdpi.com/2071-1050/8/12/1295, aunque también os lo dejo en el post para vuestra descarga directa.

Referencia:

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability 2016, 8, 1295.

Descargar (PDF, 1.14MB)

9 diciembre, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  |  

De playas certificadas a playas inteligentes

Descargar (PDF, 469KB)

Tesis doctoral: Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria

tatiana_jpg-1024x748Hoy 30 de septiembre de 2016 ha tenido lugar la defensa de la tesis doctoral de Dª Tatiana García Segura denominada “Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria”, dirigida por Víctor Yepes Piqueras. La tesis recibió la calificación de “Sobresaliente Cum Laude” por unanimidad, con mención internacional. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

Los puentes, como parte importante de una infraestructura, se espera que reúnan todos los requisitos de una sociedad moderna. Tradicionalmente, el objetivo principal en el diseño de puentes ha sido lograr el menor coste mientras se garantiza la eficiencia estructural. Sin embargo, la preocupación por construir un futuro más sostenible ha provocado un cambio en las prioridades de la sociedad. Estructuras más ecológicas y duraderas son cada vez más demandadas. Bajo estas premisas, los métodos de optimización heurística proporcionan una alternativa eficaz a los diseños estructurales basados en la experiencia. La aparición de nuevos materiales, diseños estructurales y criterios sostenibles motivan la necesidad de crear una metodología para el diseño automático y preciso de un puente real de hormigón postesado que considere todos estos aspectos. Por primera vez, esta tesis estudia el diseño eficiente de puentes de hormigón postesado con sección en cajón desde un punto de vista sostenible. Esta investigación integra criterios ambientales, de seguridad estructural y durabilidad en el diseño óptimo del puente. La metodología propuesta proporciona múltiples soluciones que apenas encarecen el coste y mejoran la seguridad y durabilidad. Al mismo tiempo, se cuantifica el enfoque sostenible en términos económicos, y se evalúa el efecto que tienen dichos criterios en el valor óptimo de las variables.

2016-09-30-19_21_29En este contexto, se formula una optimización multiobjetivo que proporciona soluciones eficientes y de compromiso entre los criterios económicos, ecológicos y sociales. Un programa de optimización del diseño selecciona la mejor combinación de geometría, tipo de hormigón, armadura y postesado que cumpla con los objetivos seleccionados. Se ha escogido como caso de estudio un puente continuo en cajón de tres vanos situado en la costa. Este método proporciona un mayor conocimiento sobre esta tipología de puentes desde un punto de vista sostenible. Se ha estudiado el ciclo de vida a través de la evaluación del deterioro estructural del puente debido al ataque por cloruros. Se examina el impacto económico, ambiental y social que produce el mantenimiento necesario para extender la vida útil del puente. Por lo tanto, los objetivos propuestos para un diseño eficiente han sido trasladados desde la etapa inicial hasta la consideración del ciclo de vida.

Para solucionar el problema del elevado tiempo de cálculo debido a la optimización multiobjetivo y el análisis por elementos finitos, se han integrado redes neuronales en la metodología propuesta. Las redes neuronales son entrenadas para predecir la respuesta estructural a partir de las variables de diseño, sin la necesidad de analizar el puente. El problema de optimización multiobjetivo se traduce en un conjunto de soluciones de compromiso que representan objetivos contrapuestos. La selección final de las soluciones preferidas se simplifica mediante una técnica de toma de decisiones. Una técnica estructurada convierte los juicios basados en comparaciones por pares de elementos con un grado de incertidumbre en valores numéricos que garantizan la consistencia de dichos juicios. Esta tesis proporciona una guía que extiende y mejora las recomendaciones sobre el diseño de estructuras de hormigón dentro del contexto de desarrollo sostenible. El uso de la metodología propuesta lleva a diseños con menor coste y emisiones del ciclo de vida, comparado con diseños que siguen metodologías generales. Los resultados demuestran que mediante una correcta elección del valor de las variables se puede mejorar la seguridad y durabilidad del puente con un pequeño incremento del coste. Además, esta metodología es aplicable a cualquier tipo de estructura y material.

30 septiembre, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia