Declaraciones ambientales de productos prefabricados de hormigón

En una entrada anterior repasábamos algunos instrumentos y directrices para el desarrollo sostenible en la construcción. Aquí voy a recoger dos artículos firmados por Alejandro López Vidal, que es el Director Técnico de ANDECE y Secretario Técnico del Subcomité AENOR AEN/CTN 198/sc1 Edificación Sostenible, donde se explica en detalle qué son y para qué sirven las declaraciones ambientales de los productos prefabricados de hormigón. Espero que os sean de interés.

Descargar (PDF, 207KB)

Descargar (PDF, 3.61MB)

 

Directrices para el desarrollo sostenible en la construcción

En esta entrada vamos a repasar algunos de los instrumentos y directrices que, fundamentalmente desde la Unión Europea, se han establecido para favoreces el desarrollo sostenible dentro del sector de la construcción. En particular, vamos a repasar brevemente el Reglamento de Producto de la Construcción, el Etiquetado Ecológico, las Declaraciones Ambientales de Producto, las Reglas de Categoría de Producto, el Análisis de Ciclo de Vida, etc.

El Parlamento Europeo publicó, en marzo del 2011, el Reglamento de Producto de la Construcción (CPR) (205/2011). Este reglamento establece las condiciones armonizadas para toda la Unión Europea en lo relativo a la comercialización de productos de la construcción, derogando así a la Directiva 89/106/CEE. Entró en vigor el 1 de julio de 2013 y supuso una serie de cambios en los diferentes aspectos y tareas a realizar por los fabricantes, y en su caso los distribuidores o importadores, de productos de la construcción para la colocación del marcado CE en sus productos, en particular en la documentación a elaborar (Parlamento Europeo & Consejo de la Unión Europea, 2011).

El Etiquetado Ecológico, por su parte, trata de promover los productos o servicios que presenten un menor impacto ambiental que otros de su misma categoría cuando se considera durante todo su ciclo de vida. Las ecoetiquetas se normalizaron con la serie ISO 14020. De acuerdo a los estándares, las ecoetiquetas y las declaraciones se clasifican en tres tipos (Baldo et al., 2013):

  • Ecoetiquetas tipo I: Se trata de un sistema voluntario de calificación ambiental que identifica y certifica de manera oficial que ciertos productos o servicios tienen una afectación menor sobre el medio ambiente teniendo en cuenta todo su ciclo de vida y que cumplen estrictos criterios ambientales previamente establecidos. Este tipo de ecoetiquetas cumple con los requisitos de la norma ISO 14024 (AENOR, 2000).
  • Ecoetiquetas tipo II: Se trata de las autodeclaraciones ambientales de producto, avalada por el mismo fabricante, referida a una fase del ciclo de vida o a un aspecto concreto del producto. Cumple con los requisitos de la norma ISO 14021 (AENOR, 2016) y ofrece una orientación en términos de carácter ambiental.
  • Declaraciones ambientales tipo III (DAP): Constituyen un inventario de datos ambientales cuantificados de un producto con unas categorías prefijadas de parámetros, basados en la serie de normas ISO 14004, referentes al análisis del ciclo de vida. Se trata de información ambiental cuantitativa comprensible según diferentes estándares. La verificación la realiza una tercera parte independiente. Cumple con los requisitos de la norma ISO 14025 (AENOR, 2010). A diferencia de las ecoetiquetas tipo I no define unos criterios sobre la preferencia ambiental de los productos ni establece unos criterios mínimos por cumplir.

 

 

Ha sido la norma ISO 15804 (AENOR, 2014) la que ha permitido definir los alcances de las Reglas de Categoría de Producto (RCP) para los productos y servicios de la construcción. Ello ha facilitado a sectores como el cerámico, el del yeso y sus derivados y el metálico, que hayan realizado sus propias DAP certificadas por algún administrador europeo como EPD y EnvironDec o española como AENOR GlobalEPD y DAPc (Codificación OpenDAP, 2014). También las constructoras han desarrollado una DAP para procesos constructivos, como es el caso de Acciona (Acciona Infraestructuras, 2013). Otras RCPs de gran interés son las recientemente aprobadas del hormigón y elementos de hormigón, donde la Asociación Nacional de la Industria del Prefabricado de Hormigón (ANDECE) ha tenido un papel relevante (López-Vidal y Yepes, 2015; López-Vidal, 2016). Hace un año puso en marcha uno de los proyectos más ambiciosos realizados hasta la fecha: el desarrollo de 6 DAP sectoriales, cada una referida a algunas de las principales categorías de productos: estructuras, forjados, fachadas, canalizaciones, elementos ligeros huecos y pavimentos, cuyas ADAP resumidas se encuentran disponibles en su página web.

Las herramientas anteriores se han basado en el Análisis del Ciclo de vida (ACV). Sin embargo, también existen otras herramientas con alta capacidad de contribución a la sostenibilidad, no solo en el sector de la construcción (Eusko Jaurlaritza, 2009) :

  • Huella de carbono: Equivale a la totalidad de GEI emitidos por efecto directo o indirecto de un individuo, organización, evento o producto. Su impacto ambiental se mide en masa de CO2 equivalente y sigue normativas internacionales reconocidas como ISO 14046-1, PAS2050 o GHG Protocol.
  • Huella hídrica: Se define como el volumen total de agua dulce que se utiliza para producir bienes y servicios de un individuo, de una comunidad o de una empresa.
  • Huella social: Se entiende como la marca reconocible y medible que un individuo, comunidad o empresa deja en la sociedad por razón de sus operaciones.

 

 

Deberíamos recordar también otras herramientas como las certificaciones ambientales de edificios e infraestructuras, de aplicación voluntaria, pensadas para identificar su calidad ambiental a través de una etiqueta y acompañar su proceso de diseño. Algunas presentan una amplia expansión en el ámbito internacional como la certificación LEED, la inglesa BREEAM o GBTOOL, que surgieron en los años 90. Posteriormente han nacido otras certificaciones, como la italiana ITACA y la española VERDE.

Por último, remarcar uno de los campos de vital importancia en el sector de la construcción, y que también deja su huella en la sostenibilidad del sector, se trata del Building Information Modeling (BIM) que se trata de una metodología de trabajo colaborativa para la gestión de proyectos de edificación u obra civil a través de una maqueta digital (Olawumi et al., 2018). En la Figura que sigue se presentan las dimensiones BIM. La sexta dimensión presenta criterios de sostenibilidad ligados a las certificaciones ambientales, el análisis del ciclo de vida y las diferentes huellas ecológicas (Yung y Wang, 2014) y el control de costes, que es la 5 dimensión, tiene características parecidas a las contempladas en el coste del ciclo de vida. De acuerdo a (Comite Técnico Bim España, 2011) la implantación a nivel europeo y nacional, el BIM va a pasar a formar parte de manera obligatoria en la normativa de contratación y licitación pública, según lo propuesto a través de la Directiva 2014/24/UE, por lo que se puede considerar que será uno de los factores que favorecerá el desarrollo sostenible de la construcción gracias a esa sexta dimensión.

Figura. Dimensiones BIM (Comité Técnico BIM España, 2011)

A continuación os dejo un vídeo de la empresa Autodesk (en inglés) denominado “Life Cycle Assessment as part of Strategic Sustainability for Product Design”. Espero que os sea útil.

Referencias:

  • AENOR (2000). ISO 14024:1999. Etiquetado ecológico Tipo I. Principios y procedimientos.
  • AENOR (2010). ISO 14025:2006. Declaraciones ambientales tipo III. Principios y procedimientos.
  • AENOR (2014). UNE-EN 15804:2012+A1:2014. Sostenibilidad en la construcción. Declaraciones ambientales de producto.
  • AENOR (2016). ISO 14021:2016. Afirmaciones ambientales autodeclaradas (Etiquetado ambiental tipo II).
  • Baldo, G. L.; Cesarei, G.; Minestrini, S.; Sordi, L. (2013). The EU Ecolabel scheme and its application to construction and building materials. Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. https://doi.org/10.1533/9780857097729.1.98
  • Codificación OpenDAP. (2014). OpenDAP. Retrieved from http://www.opendap.es/acvnormativa
  • Comite Técnico Bim España. (2011). Dimensiones Bim. Retrieved from www.esbim.es
  • Eusko Jaurlaritza, G. V. (2009). Análisis de ciclo de vida, huella de carbono, huella hídrica y huella social. Ihobe.
  • López-Vidal, A. (2016). Economía circular en los prefabricados de hormigón: hacia el objetivo “cero residuos”. Cemento Hormigón, pp. 74–78.
  • López-Vidal, A.; Yepes, V. (2015). Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón. Una primera aproximación. PHi Planta de Hormigón Internacional, 5:18-24.
  • Olawumi, T. O., Chan, D. W. M., Wong, J. K. . W., & Chan, A. P. C. (2018). Barriers to the Integration of BIM and Sustainability Practices in Construction Projects: A Delphi Survey of International Experts. Journal of Building Engineering, 20(January), 60–71. https://doi.org/doi.org/10.1016/j.jobe.2018.06.017
  • Parlamento Europeo, Consejo de la Unión Europea. (2011). Reglamento (UE) No 305/2011 del Parlamento Europeo y del Consejo por el que se establecen condiciones armonizadas para la comercialización de productos de construcción y se deroga la Directiva 89/106/CEE del Consejo. Doue (Vol. 4.4.2011).
  • Yung, P., & Wang, X. (2014). A 6D CAD model for the automatic assessment of building sustainability. International Journal of Advanced Robotic Systems, 11(1), 1–8. https://doi.org/10.5772/58446

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Categorías para los aspectos e impactos sociales de los edificios

La evaluación del comportamiento social de los edificios no es una tarea sencilla, sobre todo cuando se trata de comparar objetivamente edificios distintos o bien cuando se trata de determinar el grado en el que el edificio alcanza o supera los requisitos mínimos. Esta evaluación debe aplicar medidas relacionadas con los aspectos y los impactos sociales durante el ciclo de vida del edificio. Pues bien, la norma europea EN-15643-3 establece el marco para la evaluación del comportamiento social de un edificio, como parte de la evaluación de su sostenibilidad. Esta norma forma parte de una serie elaborada por el Comité Técnico CEN/TC 350.

La norma citada ha establecido una serie de categorías para describir los aspectos e impactos vinculados con el comportamiento social de los edificios. A continuación se da un repaso a dichas categorías.

Accesibilidad

Es la capacidad de un espacio que permite entrar con facilidad. Puede incluir los siguientes aspectos:

  • accesibilidad de personas con necesidades específicas
  • accesibilidad a los servicios del edificio

 

Adaptabilidad

Es la capacidad del objeto de la evaluación, o parte del mismo, para ser cambiado o modificado de forma que sea adecuado para un uso específico. Puede incluir los siguientes aspectos:

  • capacidad de acomodarse a los requisitos del usuario individual
  • capacidad de acomodarse al cambio en los requisitos del usuario
  • capacidad de acomodarse a los cambios técnicos
  • capacidad de acomodarse a los cambios de uso

 

Salud y confort

Incluye los siguientes aspectos:

  • características acústicas
  • características de la calidad del aire interior
  • características de confort visual
  • características de calidad del agua
  • características electromagnéticas
  • características espaciales
  • características térmicas

 

Cargas al vecindario

Debe incluir:

  • ruido
  • emisiones al aire exterior, liberación al suelo y al agua
  • deslumbramiento y sobresombreamiento
  • golpes y vibraciones
  • efectos del viento localizados

 

Mantenimiento

Debe incluir las operaciones de mantenimiento (incluyendo los aspectos de salud y confort para el usuario del edificio y las cargas al vecindario).

 

Seguridad

La evaluación de la seguridad de las personas y bienes debe incluir:

  • resistencia al cambio climático (resistencia a la lluvia, al viento, a la nieve, a las inundaciones, radiación solar, a la temperatura)
  • resistencia a acciones accidentales (terremotos, explosiones, fuego, impactos de tráfico)
  • seguridad de las personas y los bienes frente a intrusos y vandalismo
  • seguridad de los bienes frente interrupciones de suministros

 

Implicación de las partes interesadas

Debe incluir la oportunidad de las partes interesadas de participar en el proceso de toma de decisiones para la realización de un edificio.

Referencia:

AENOR (2012). UNE-EN 15643-3. Sostenibilidad en la construcción. Evaluación de la sostenibilidad de los edificios. Parte 3: Marco para la evaluación del comportamiento social.

 

¿Qué indicadores se usan en la evaluación del comportamiento ambiental de los edificios?

http://www.ecohabitar.org/predecir-el-impacto-ambiental-de-la-construccion-de-edificios/

No resulta sencillo seleccionar qué indicadores son los más adecuados para evaluar el comportamiento ambiental de un edificio. Estos indicadores deberían cuantificar los impactos y los aspectos ambientales del edificio durante su ciclo de vida completo, debiendo ser relativamente sencillos en su utilización y comprensión. Recordemos que un aspecto ambiental es el elemento de las actividades, productos o servicios de una organización que puede interactuar con el medio ambiente, mientras que el impacto ambiental es cualquier cambio en el medio ambiente, ya sea adverso o beneficioso, como resultado total o parcial de los aspectos ambientales de una organización.

Para que la cuantificación anterior sea efectiva, deberíamos ponernos de acuerdo en aquellos indicadores para los que existen métodos de cálculo aceptados en el contexto del análisis de ciclo de vida (ACV). Así, por ejemplo, indicadores de interés como la toxicidad humana, la eco-toxicidad, la biodiversidad o el uso del suelo son relevantes, pero no existe un consenso en el método de cálculo que permita comparaciones objetivas.

Los indicadores deben ayudar a la toma de decisiones, para lo cual se deben analizar los cambios la variación de los cambios en el tiempo y el desarrollo de cambios con respecto a los objetivos preestablecidos. Para ello, se les debe exigir que sean objetivos y que sus resultados se puedan reproducir.

La Norma europea EN 15978Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method” proporciona unas tablas con aquellos indicadores de los que existen métodos de cálculo aceptados. Estos indicadores describen impactos ambientales, uso de recursos e información ambiental adicional.

Indicadores que describen impactos ambientales:

  • Potencial de calentamiento global, GWP (Global warming potential)
  • Potencial de agotamiento de la capa de ozono estratosférica, ODP (Depletion potential of the stratospheric ozone layer)
  • Potencial de acidificación de tierra y agua, AP (Acidification potential of land and water)
  • Potencial de eutrofización, EP (Eutrophication potential)
  • Potencial de formación de oxidantes fotoquímicos del ozono troposférico, POCP (Formation potential of tropospheric ozone photochemical oxidants)
  • Potencial de agotamiento de recursos abióticos para elementos, ADP_elementos (Abiotic Resource Depletion Potential for elements)
  • Potencial de agotamiento de recursos abióticos para combustibles fósiles, ADP_combustibles fósiles (Abiotic Resource Depletion Potential of fossil fuels)

 

Indicadores que describen uso de recursos:

  • Uso de energía primaria no renovable excluyendo los recursos de energía utilizados como materia prima
  • Uso de recursos energía primaria renovable utilizados como materia prima
  • Uso de energía primaria no renovable excluyendo los recursos de energía utilizados como materia prima
  • Uso de recursos energía primaria no renovable utilizados como materia prima
  • Uso de materiales secundarios
  • Uso de combustibles secundarios renovables
  • Potencial de agotamiento de recursos abióticos para elementos, ADP_elementos (Abiotic Resource Depletion Potential for elements)
  • Potencial de agotamiento de recursos abióticos para combustibles fósiles, ADP_combustibles fósiles (Abiotic Resource Depletion Potential of fossil fuels)

 

Indicadores que describen la información ambiental adicional:

Indicadores que describen categorías de residuos

  • Residuos peligrosos vertidos
  • Residuos no peligrosos vertidos
  • Residuos radioactivos vertidos

 

Indicadores que describen los flujos de salida que abandonan el sistema

  • Componentes para reutilización
  • Materiales para el reciclaje
  • Materiales para valorización energética (que no sean residuos para incineración)
  • Energía exportada

 

Referencia:

AENOR (2012). UNE-EN 15978. Sostenibilidad en la construcción. Evaluación de la sostenibilidad de los edificios. Métodos de cálculo.

Evaluación de la sostenibilidad en los edificios

Figura 1. Maison solaire écoologique, île Sainte-Hélène. By Benoit Rochon [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], from Wikimedia Commons

El Comité Técnico CEN/TC 350Sostenibilidad en la construcción” ha estado desarrollando normativa para materializar el concepto de sostenibilidad en el sector de la edificación. No solo se trata de normalizar la variable medioambiental, sino que se trata de integrar también los factores económicos y sociales para obtener una visión de conjunto. El referente normativo era necesario debido a la amplia proliferación de métodos de evaluación en los últimos años, desde la aparición del sistema BREEAM (BRE Environmental Assessment Method), en 1992, que ofreció el primer método de etiquetado de edificios. La gran proliferación de métodos, instrumentos y herramientas de evaluación presentan, en general, como desventaja más destacable, el que no proporcionan información sobre los efectos y, en no pocas ocasiones, no permiten un análisis comparativo con el objetivo de plantear acciones de mejora. Todo ello motivó la propuesta de un marco genérico de evaluación de la sostenibilidad (establecido a nivel internacional en la ISO 21929-1:2011 y en el ámbito europeo por la EN 15643-1:2010). En este sentido, se trataba de establecer una valoración de la sostenibilidad con indicadores cualitativos que se midan sin entrar en juicios de valor, capaces de cuantificar los impactos y los aspectos del comportamiento ambiental, social y económico de los edificios.

Se trata, por tanto, de establecer un estándar para comparar objetivamente los resultados de la evaluación de un edificio o una parte del mismo. Para ello se utilizan distintos tipos de información para establecer valores para los diferentes tipos de indicadores e información sobre los escenarios y las etapas del ciclo de vida incluidas en la evaluación. En la Figura 2 se muestra cómo la evaluación supone que el modelo descriptivo, con sus especificaciones técnicas y funcionales básicas, se ha definido por la reglamentación o en el pliego de condiciones del cliente.

 

Figura 2. Concepto de evaluación de la sostenibilidad de edificios. Fuente: UNE-EN 15643-1

La Norma que proporciona el marco metodológico con los principios, requisitos y directrices para la evaluación de la sostenibilidad de los edificios es la EN 15643-1. Dicha Norma establece que los objetivos de la evaluación son, en primer lugar, determinar los impactos y aspectos del edificio y de su parcela y, en segundo lugar, permitir al cliente, al usuario y al arquitecto tomar decisiones y seleccionar alternativas que ayuden a considerar la necesario sostenibilidad de los edificios.

Por otra parte, la satisfacción de los requisitos técnicos y funcionales establecidos en el pliego de condiciones del cliente o bien en las especificaciones del proyecto, generan impactos y aspectos ambientales, sociales y económicos, que pueden ser positivos o negativos, y que pueden persistir durante el ciclo de vida completo del edificio, incluso pudiendo continuar después del desmantelamiento y la demolición.

Otro de los conceptos a tener en cuenta es el denominado “equivalente funcional“. Se trata de una referencia para poder comparar los resultados de las evaluaciones del comportamiento ambiental, social y económico del edificio. Se utiliza, por tanto, el mismo equivalente funcional en la evaluación de cada una de las dimensiones individuales de la sostenibilidad. Este equivalente funcional debe incluir información, al menos, de los siguiente: (a) tipología del edificio (fábrica, oficina, etc.); (b) perfil de uso (residencia, hospital, etc.); (c) requisitos técnicos y funcionales pertinentes; y (d) vida útil requerida.

Referencias:

AENOR (2012). UNE-EN 15643-1. Sostenibilidad en la construcción. Evaluación de la sostenibilidad de los edificios. Parte 1: Margo general.

MOLINA-MORENO, F.; YEPES, V. (2015). Comparative analysis of the assessment proposed by sustainability assessment tools in Building Constructions. 6th European Conference on Energy Efficiency and Sustainability in Architecture and Planning, Donostia-San Sebastián (Spain), 29 june – 1 july,  pp. 143-148. ISBN: 978-84-9082-174-9

OWENSBY-CONTE, D.; YEPES, V. (2012). Green Buildings: Analysis of State of Knowledge. International Journal of Construction Engineering and Management, 1(3):27-32. doi: 10.5923/j.ijcem.20120103.03.

 

 

Optimización del diseño sostenible de puentes bajo incertidumbre

Nos acaban de publicar en la revista de Elsevier del primer decil, Journal of Cleaner Production, un artículo donde se propone una nueva metodología en la toma de decisiones del diseño óptimo de un puente bajo criterios de sostenibilidad y bajo incertidumbre. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

El artículo lo podéis descargar GRATUITAMENTE hasta el 16 de octubre de 2018 en el siguiente enlace:

https://authors.elsevier.com/c/1XdSi3QCo9R4pK

Abstract:

Today, bridge design seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. This multi-criteria decision-making problem is subject to variability of the opinions of stakeholders regarding the importance of criteria for sustainability. As a result, this paper proposes a method for designing and selecting optimally sustainable bridges under the uncertainty of criteria comparison. A Pareto set of solutions is obtained using a metamodel-assisted multi-objective optimization. A new decision-making technique introduces the uncertainty of the decision-maker’s preference through triangular distributions and thereby ranks the sustainable bridge designs. The method is illustrated by a case study of a three-span post-tensioned concrete box-girder bridge designed according to the embodied energy, overall safety and corrosion initiation time. In this particular case, 211 efficient solutions are reduced to two preferred solutions which have a probability of being selected of 81.6% and 18.4%. In addition, a sensitivity analysis validates the influence of the uncertainty regarding the decisionmaking. The approach proposed allows actors involved in the bridge design and decision-making to determine the best sustainable design by finding the probability of a given design being chosen.

Keywords:

  • Sustainable criteria
  • Uncertainty
  • Decision-making
  • Multi-objective optimization
  • Energy efficiency

 

Reference:

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.  Journal of Cleaner Production, 202:904-915. https://doi.org/10.1016/j.jclepro.2018.08.177

 

 

¿Qué es el Análisis del Ciclo de Vida?

Nuestro grupo de investigación está en estos momentos muy centrado en aspectos relacionados con el análisis del ciclo de vida y con la sostenibilidad de las infraestructuras. Proyectos como BRIDLIFE y DIMALIFE inciden especialmente es estos temas. He considerado, por tanto, de gran interés para el lector, resumir brevemente el concepto, los tipos, algo de historia y proporcionar unas pequeñas referencias al respecto. Espero que os sean de interés.

El Análisis del Ciclo de Vida clásico constituye una metodología objetiva que trata de evaluar las cargas ambientales asociadas a un producto, proceso o actividad, identificando y cuantificando el uso de materia y energía además de las emisiones al entorno (Olivera et al., 2016).

Sus orígenes se remontan a finales de los años 60. Dos investigadores del Instituto de Investigación del Medio Oeste (MRI), Robert Hunt y William Franklin empezaron a trabajar en una técnica que permitiese cuantificar la energía demandada y los recursos, así como las emisiones de gases de efecto invernadero (GEI) por parte de las industrias (Trusty y Deru, 2005). Esta técnica paso a llamarse como Análisis de Perfil Ambiental y de Recursos (REPA) y se utilizó por primera vez en 1969 por el MRI junto a la compañía Coca-Cola para analizar y seleccionar los materiales más ecológicos y como tratarlos en su final de vida (Gerilla et al., 2007).

La primera expansión del uso de esta tecnología tuvo lugar durante la crisis energética de los años 70, para estudiar el consumo energético de productos de embalaje de plástico o cartón. A finales de los 80’s y principios de los 90’s tuvo de nuevo un gran alcance como herramienta de marketing (Owens, 1996).

Con los avances metodológicos de la herramienta y la proliferación de resultados muy dispares en los diferentes estudios realizados, se decidió llevar a cabo una armonización del ACV. Con dicha finalidad aparecieron diversas directrices, destacando la holandesa y la nórdica, que también incluían recomendaciones contradictorias.

A inicios de los 90’s, la Sociedad de Toxicología Ambiental y Química (SETAC) alcanzó a un consenso mediante grupos consultivos de América del Norte y Europa y elaboraron el “Código de práctica para la evaluación del ciclo de vida”. Paralelamente, surgieron otras iniciativas como la Guía LCA Z-760 de la Asociación de Estandarización Canadiense.

Finalmente, a finales de los años 90, surgieron los procesos de estandarización más reconocidos por parte de la Organización Internacional de Normalización (ISO) (Russell et al., 2005).

La ISO emitió los estándares internacionales más relevantes en 1997, definiendo el ACV como “un método para resumir y evaluar la carga ambiental de un producto (o servicio) en todo el ciclo de vida, y el impacto o influencia potencial sobre el medio ambiente” en la serie de normas ISO 14040 (AENOR, 2006). Esta metodología es compatible con la evaluación de los impactos socioeconómicos, puesto que comparten ciertos elementos que aportan datos comparativos muy útiles para la toma de decisiones frente a nuevos proyectos o acciones de mejora.

De este modo quedan las tres dimensiones del análisis del ciclo de vida:

  • Análisis del Ciclo de Vida Ambiental (ACV-A): Metodología ya presentada que contempla la carga ambiental producida por un producto o servicio durante todo el ciclo de vida.
  • Coste del Ciclo de Vida (CCV): Este análisis se centra en la etapa de diseño de un producto, analizando los costes directos y los beneficios de las actividades económicas, como los costes para la prevención de la contaminación, los costes de las materias primas, los impuestos y los intereses sobre el capital entre otros, en resumen, es una recopilación y evaluación de todos los costes relacionados con un producto a lo largo de todo su ciclo de vida.
  • Análisis del Ciclo de Vida Social (ACV-S): Se trata de una herramienta de evaluación de impactos sociales cuyo objetivo es analizar los aspectos sociales y socio-económicos de los productos y sus impactos potenciales (positivos y negativos) durante todo el ciclo de vida.

 

Como combinación de las tres tipologías, se plantea el Análisis del Ciclo de Vida de la Sostenibilidad (ACV-SOS) realizando un análisis integrado de cualquier producto o servicio.

La Comisión Europea planteó una guía de ruta a esta situación, por medio del proyecto CALCAS (Coordination for innovation in Life Cycle for Sustainability) desde el 2006, con el fin de organizar las distintas modalidades que han surgido mediante una futura norma ISO ACV, que englobara un análisis multicriterio sobre sostenibilidad (van der Giesen et al., 2013).

Aunque la metodología de las tres dimensiones del ACV está basada en la norma ISO 14040, esta no tiene dentro de su alcance el estudio del impacto económico y social, por lo que es necesario combinarla con otras herramientas para profundizar ese análisis. Os dejo a continuación una serie de referencias bibliográficas por si os interesa profundizar más en el tema.

Referencias

  • AENOR (2006). ISO 14040:2006. Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia. Madrid.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GERILLA, G. P.; TEKNOMO, K.; HOKAO, K. (2007). An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment, 42(7), 2778–2784.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 (link).
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. https://doi.org/10.1016/j.eiar.2018.05.003
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196:698-713. https://doi.org/10.1016/j.jclepro.2018.06.110
  • OLIVERA, A.; CRISTOBAL, S.; SAIZAR, C. (2016). Análisis de ciclo de vida ambiental, económico y social. INNOTEC, 7, 20–27.
  • OWENS, J. W. (1996). LCA Methodology LCA Impact Assessment Categories Technical Feasibility and Accuracy. International Journal of Life Cycle Assessment, 1(3), 151–158.
  • PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420.  https://doi.org/10.1016/j.jclepro.2018.04.268
  • RUSSELL, A.; EKVALL, T.; BAUMANN, H. (2005). Life cycle assessment – Introduction and overview. Journal of Cleaner Production, 13(13–14), 1207–1210.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure.Journal of Construction Engineering and Management, 142(5):  05015020. DOI: 10.1061/(ASCE)CO.1943-7862.0001099.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects.Environmental Impact Assessment Review, 65:41-53. DOI: 10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003 (link)
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI: 10.1016/j.jclepro.2018.03.022.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006 
  • TRUSTY, W.; DERU, M. (2005). The U.S. LCI database project and its role in Life Cycle Assessment. Building Design and Construction, 1, 26–29.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis del ciclo de vida de las medidas preventivas a la corrosión aplicadas a puentes pretensados

Acaban de publicarnos un artículo en la revista Environmental Impact Assessment Review (primer decil del JCR), de la editorial ELSEVIER, en el que se realiza una valoración de las medidas preventivas consideradas en el proyecto a lo largo del ciclo de vida de un puente de hormigón sometido a un ambiente costero, donde los clorhídricos suponen una agresión que supone un mantenimiento de la infraestructura. En el artículo se analizan 15 diseños diferentes y se comprueba que no siempre realizar un mantenimiento mínimo supone menores impactos ambientales. Además, los tratamientos superficiales y la adición de humo de sílice supone una reducción del 70% en los impactos.

Además, la editorial ELSEVIER nos permite la distribución gratuita del artículo hasta el 6 de agosto de 2018. Por tanto, os paso el enlace para que os podáis descargar este artículo: https://authors.elsevier.com/a/1XERB3QCo9R2ye

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196:698-713. https://doi.org/10.1016/j.jclepro.2018.06.110

Abstract:

Chloride corrosion of reinforcing steel in concrete structures is a major issue in the construction sector due to economic and environmental reasons. Assuming different prevention strategies in aggressive marine environments results in extending the service life of the exposed structures, reducing the maintenance actions required throughout their operation stage. The aim of the present study is to analyze the environmental implications of several prevention strategies through a life cycle assessment using a prestressed bridge deck as a case study.

The environmental impacts of 15 prevention alternatives have been evaluated when applied to a real case of study, namely a bridge deck exposed to a chloride laden surrounding. The Eco-indicator 99 methodology has been adopted for the evaluation of the impacts. As some of the alternatives involve the use of by-products such as fly ash and silica fume, economic allocation has been assumed to evaluate their environmental impacts.

Results from the life cycle analysis show that the environmental impacts of the chloride exposed structure can be reduced significantly by considering specific preventive designs, such as adding silica fume to concrete, reducing its water to cement ratio or applying hydrophobic or sealant treatments to its surface. In such scenarios, the damage caused to the environment mainly due to maintenance operations and material consumption can be reduced up to a 30–40% of the life cycle impacts associated to a conventional design. The study shows how the application of life cycle assessment methodologies can be of interest to reduce the environmental impacts derived from the maintenance operations required by bridge decks subjected to aggressive chloride laden environments.

Keywords:

Life cycle assessmentChloride corrosionPreventive measuresEco-indicator 99Bridge deckSustainable designConcrete

Highlights:

  • Life cycle assessment of different design strategies for bridge decks in marine environments.
  • 15 different design alternatives were studied and compared with the conventional design.
  • Less maintenance does not always result in lower environmental impacts.
  • Steel and maintenance are main contributors to environmental burdens.
  • Surface treatments and the addition of silica fume reduce impacts up to 70%.

 

 

 

¿Cómo valorar el impacto social de las infraestructuras? Estado del arte

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production (primer decil del JCR), de la editorial ELSEVIER, en la que revisamos el estado del arte de la investigación realizada a nivel internacional sobre la aplicación de las técnicas de valoración multicriterio al impacto social de las infraestructuras. El tema no es nada sencillo, puesto que los impactos sociales son mucho más difíciles de valorar que los impactos económicos o medioambientales. Nos referimos a aspectos como el empleo, el bienestar social, la salud pública, la productividad, el desarrollo regional, la equidad intergeneracional, la igualdad social, la educación, etc. Además, hay que tener en cuenta que, al igual que una piedra cae en una balsa de agua, las ondas generadas (el impacto) presentan un estado transitorio (corto plazo) y otro estacionario (largo plazo). A veces es difícil conjugar el corto y el largo plazo en la evaluación de la sostenibilidad social.

La editorial ELSEVIER nos permite la distribución gratuita del artículo hasta el 26 de mayo de 2018. Por tanto, os paso el enlace para que os podáis descargar este artículo: https://authors.elsevier.com/c/1Wr0s3QCo9R0Il

Referencia: 

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. https://doi.org/10.1016/j.jclepro.2018.03.022

Abstract:

Nowadays multi-criteria methods enable non-monetary aspects to be incorporated into the assessment of infrastructure sustainability. Yet evaluation of the social aspects is still neglected and the multi-criteria assessment of these social aspects is still an emerging topic. Therefore, the aim of this article is to review the current state of multi-criteria infrastructure assessment studies that include social aspects. The review includes an analysis of the social criteria, participation and assessment methods. The results identify mobility and access, safety and local development among the most frequent criteria. The Analytic Hierarchy Process and Simple Additive Weighting methods are the most frequently used. Treatments of equity, uncertainty, learning and consideration of the context, however, are not properly analyzed yet. Anyway, the methods for implementing the evaluation must guarantee the social effect on the result, improvement of the representation of the social context and techniques to facilitate the evaluation in the absence of information.

Keywords:

Infrastructure
Multi-criteria
Social sustainability
Equity
Stakeholders
Uncertainty

 

Highlights:

  • Review of multi-criteria assessment methods of infrastructure social sustainability.
  • Identify trends of social criteria considered.
  • Identify trends of participation of stakeholders.
  • Identify trends of multi-criteria methods.
  • Identify trends of consideration of equity, context and social learning.

 

 

La perspectiva del ciclo de vida de los puentes

Fotografía: Xosé Manuel López Gallego

La sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento (Yepes et al., 2016; Torres-Machí et al., 2017; Zastrow et al., 2017). Los puentes se proyectan para ser funcionales durante muchos años, por lo que deben considerarse todos los aspectos relacionados con su ciclo de vida: proyecto, construcción, operación y desmantelamiento. Es por ello que la inversión debe contemplar el deterioro del puente y su mantenimiento para mantener la estructura en buenas condiciones el máximo tiempo posible. Una revisión reciente de la aplicación de los métodos de decisión multicriterio a los puentes puede consultarse en el trabajo de Penadés-Plà et al. (2016).

Sarma y Adeli (1998) revisaron los estudios realizados sobre la optimización de estructuras de hormigón y detectaron cierta carencia en cuanto a la investigación en el ámbito de la optimización de las estructuras que considere el coste de todo el ciclo de vida, y no solo el coste inicial de su construcción. Frangopol y Kim (2011) también reivindicaron la importancia de extender la vida útil de las estructuras, pues muchas de ellas empiezan a mostrar señales significativas de deterioro antes de lo esperado. Para prolongar la vida de las estructuras deterioradas, se pueden aplicar medidas de mantenimiento que retrasen la propagación de los daños, o bien reducir el grado de dicho daño (Kim et al., 2013). Frangopol y Soliman (2016) describieron las acciones necesarias para la planificación eficaz del mantenimiento para maximizar las prestaciones de la estructura durante el ciclo de vida bajo restricciones presupuestarias. García-Segura et al. (2017) han optimizado las labores de mantenimiento de puentes pretensados desde el punto de vista de sostenibilidad económica, social y ambiental partiendo de diseños optimizados con múltiples objetivos (económico, durabilidad y seguridad).

El mantenimiento de los elementos de los puentes de grandes luces situados en zonas costeras deteriorados por corrosión representa la mayor parte del coste del ciclo de vida de estas estructuras (Cheung et al., 2009). Kendall et al. (2008) propusieron un modelo que integraba el análisis del ciclo de vida y los costes asociados desde la perspectiva de la sostenibilidad. Lee et al., (2006) evaluaron la fiabilidad de un puente cuando la corrosión y el tráfico de camiones pesados afectan a la estructura. Propusieron una metodología realista de los costes a lo largo del ciclo de vida, incluyendo los costes iniciales, los de mantenimiento, los esperados en la rehabilitación, las pérdidas por accidentes, los costes del usuario de la carretera y las pérdidas socioeconómicas indirectas. Penadés-Plà et al. (2017, 2018) han estudiado el ciclo de vida de puentes de sección en cajón y puentes de vigas artesa. Navarro et al. (2018) han analizado en un trabajo reciente el coste del ciclo de vida de las estrategias de mantenimiento en puentes pretensados expuestos al ataque de clorhídricos.

Neves y Frangopol (2005) indicaron cómo la evaluación de la seguridad de una estructura constituye un indicador básico para medir su rendimiento, pues el estado de la estructura no es un indicador preciso para evaluar la seguridad y la funcionalidad de un puente. Liu y Frangopol (2005) estudiaron la mejor planificación del mantenimiento de un puente durante su ciclo de vida mediante una optimización multiobjetivo de la vida útil, el nivel de seguridad y el coste del mantenimiento. Como se puede ver, los objetivos de rendimiento estructural y de economía se han añadido a los aspectos sociales y ambientales de las acciones de mantenimiento de las estructuras (Dong et al., 2013; Sierra et al., 2016; García-Segura et al., 2017).

Referencias:

Cheung, M. M.; Zhao, J.; Chan, Y. B. (2009). Service life prediction of RC bridge structures exposed to chloride environments. Journal of Bridge Engineering, 14(3), 164–178.

Dong, Y.; Frangopol, D.M.; Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467.

Frangopol, D.M.; Kim, S. (2011). Service life, reliability and maintenance of civil structures. In L. S. Lee; V. Karbari (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 145–178). Elsevier.

Frangopol, D.M.; Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20.

García-Segura, T.;  Yepes, V.; Frangopol, D.M.; Yang, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391.

Kendall, A.; Keoleian, G.A.; Helfand, G. E. (2008). Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications. Journal of Infrastructure Systems, 14(3), 214–222.

Kim, S.; Frangopol, D.M.; Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447.

Lee, K.M.; Cho, H.N.; Cha, C.J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252–1265.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Navarro, I.J.; Yepes, V.; Martí, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845.

Neves, L.C.; Frangopol, D.M. (2005). Condition, safety and cost profiles for deteriorating structures with emphasis on bridges. Reliability Engineering & System Safety, 89(2), 185–198.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.

Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.

Torres-Machí, C.; Pellicer, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.

Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.