Cálculo de la producción de una draga de succión en marcha aplicando el método BBL

Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/

Una draga hidráulica de succión en marcha o de arrastre es una embarcación autopropulsada y autoportante que draga de forma continua elevados volúmenes de material en aguas profundas, incluso admitiendo condiciones marítimas desfavorables. Este tipo de dragas suponen algo menos de la cuarta parte del parque mundial de dragas hidráulicas. En un artículo anterior tuvimos ocasión de explicar este tipo de dragas.

Para calcular la producción de una draga de succión en marcha podemos aplicar el método BBL (Bray, Bates y Land, 1997), que estima los rendimientos de las dragas aplicando factores de reducción que representan pérdidas de tiempo sobre la producción teórica.

A continuación os paso un problema resuelto que espero que os sea de utilidad.

Descargar (PDF, 320KB)

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038. Valencia, 74 pp.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno, Madrid, 323 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Necrológica: Ha fallecido el profesor José Javier Díez González

Homenaje a nuestros Directores de Escuela en el 50 Aniversario. De izquierda a derecha: D. José Aguilar Herrando, D. Francisco Ramos Ramis, D. José Soler Sanz, D. Eugenio Pellicer Armiñana, D. José Javier Diez González, D. Joaquín Andreu Álvarez, D. Vicent Esteban Chapapria y D. Francisco Pérez Puche

Ayer recibimos la triste noticia del fallecimiento de nuestro compañero José Javier Díez González, Catedrático de Puertos y Costas y también Director de nuestra Escuela de Ingenieros de Caminos de Valencia desde el 30 de mayo de 1981 hasta el 5 de marzo de 1984.

José Javier, nacido en La Robla (León) era en la actualidad Catedrático Emérito por la Universidad Politécnica de Madrid (UPM) en las disciplinas de Puertos y Costas y de Oceanografía e Ingeniería de Costas, en la Escuela de Ingenieros de Caminos, Canales y Puertos, en la que inició sus actividades docentes e investigadoras en 1970 y obtuvo su doctorado como Ingeniero de Caminos en 1973. Fue asimismo profesor de esas materias en Valencia entre 1977 y 1984 y de Físico-Química en la facultad de Farmacia de la Universidad Complutense entre 1974 y 1977 y ha sido profesor visitante en varias universidades del Reino Unido, EE. UU., México, Argentina y Chile. José Javier es también Licenciado en Farmacia (1969) y Licenciado en Economía (1974); títulos ambos obtenidos en la Universidad Complutense de Madrid.

Os dejo a continuación una entrevista que le realizó la Asociación Meteorológica Española.

Descargar (PDF, 120KB)

Una breve introducción a la dinámica litoral de nuestras costas

Son muchas las actividades que está desarrollando la Escuela de Caminos, Canales y Puertos de la Universitat Politècnica de València con motivo de su 50 aniversario. Una de ellas es la elaboración de una serie de vídeos divulgativos de la Ingeniería Civil y su papel en la sociedad.

Para empezar tenemos este vídeo producido por  y editado por Diodo Media. En él se describe la dinámica litoral de nuestras costas. Esperamos que lo disfrutéis.

Curso de Planificación y Gestión de Playas. Universidad de Oporto

La Faculdade de Engenharia da Universidade do Porto (Portugal), a través del Instituto de Hidráulica y Recursos Hídricos (FEUP), junto con la Universitat Politècnica de València, han organizado un Curso de Planificación y Gestión de Playas, que tendrá lugar en Oporto entre los días 25 y 29 de junio de 2018. Esta es la segunda vez que se programa este curso, de 25 horas, que en su primera edición en 2010, tuvo un éxito muy notable en cuanto a participación e inscripción. El curso se desarrollará en español, contando con la participación de tres catedráticos de la UPV: Víctor Yepes, Vicent Esteban y José Serra.

Si estás interesado, las inscripciones las puedes realizar a través del siguiente enlace: https://cursopraiasihrh.weebly.com/inscriccedilotildees.html. Asimismo, el contacto con los organizadores del Curso lo podéis obtener en la siguiente dirección: https://cursopraiasihrh.weebly.com/contactos.html

El programa que se desarrollará será el siguiente:

Bloque 1: Planificación. 5 horas. Víctor Yepes.

  1. El turismo litoral, evolución y tendencias.
  2. La importancia económica de las playas turísticas.
  3. La ordenación de usos y zonificación de las playas.
  4. Capacidad de carga turística de una playa.
  5. La gestión integrada del litoral.

Bloque 2: Infraestructuras. 5 horas. Víctor Yepes.

  1. Infraestructuras lúdicas y deportivas.
  2. Infraestructuras higiénicas y estrategias de ahorro hídrico.
  3. Diseño y gestión de playas accesibles.
  4. Servicios de información, salvamento y primeros auxilios.
  5. Equipos de limpieza de playas.

Bloque 3: Sistemas de gestión de calidad y medio ambiente. 5 horas. Víctor Yepes.

  1. La innovación y gestión de la calidad y del medio ambiente en las playas.
  2. Gestión ambiental de recursos turísticos litorales. Banderas azules.
  3. La aplicación de la norma ISO 9001 e ISO 14001 a las playas.
  4. El sistema de calidad turístico español: La “Q” del ICTE.
  5. La incidencia de la gestión turística en las playas encajadas.

Bloque 4: Procesos y riesgos litorales en playas turísticas. 5 horas. José C. Serra.

  1. El medio costero-litoral: Dinámica, procesos y formas.
  2. Estabilidad, evolución, prognosis y control y seguimiento de playas.
  3. Riesgos en el litoral.
  4. Restauración y sostenibilidad del medio costero-litoral.
  5. Diseño y gestión de paseos marítimos.

Bloque 5: Turismo náutico e instalaciones náutico-deportivas. 5 horas. Vicent Esteban.

  1. La práctica de la náutica deportiva.
  2. Las instalaciones náuticas de recreo.
  3. Tipología de usuarios y servicios náuticos.
  4. Organización y gestión de infraestructuras náuticas.
  5. Impacto socio-económico de las instalaciones náuticas de recreo.

Dragas de succión en marcha o de arrastre

Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/
Figura 1. Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/

Una draga hidráulica de succión en marcha o de arrastre es una embarcación autopropulsada y autoportante que draga de forma continua elevados volúmenes de material en aguas profundas, incluso admitiendo condiciones marítimas desfavorables. Este tipo de dragas suponen algo menos de la cuarta parte del parque mundial de dragas hidráulicas.

El material se aspira mediante una tubería que presenta en su extremo un cabezal de succión. La bomba de dragado, centrífuga, puede ser sumergible (esta se instala en la tubería de succión a medio camino entre el cabezal y la conexión del tubo de succión al forro exterior del casco), o estar a bordo. La bomba pone en suspensión al material suelto y al agua, aspira dicha mezcla mientras el barco sigue en movimiento y la almacena en la cántara de la propia draga. El material sólido se decanta y el agua se evacua por rebose. La cántara puede almacenar entre 1000 y 20000 m³, pudiéndose transporta el material a grandes distancias. Se descarga el material por apertura del fondo o por bombeo.

Esta draga es muy útil en terrenos blandos, no demasiados compactos ni cohesivos (fangos, arcillas blandas, arenas y algunas gravas). La profundidad de trabajo de esta draga se encuentra habitualmente entre los 4 y 50 m, aunque ya se han alcanzado profundidades de trabajo que llegan a 120-150 m. La velocidad de navegación, de 17 nudos. Puede trabajar hasta con una altura de ola de 5 m. El tamaño máximo de partícula es de 300 mm y la resistencia máxima al corte del material a dragar es de 75 kPa.

Figura 2. Ciclo de trabajo de las dragas de succión en marcha (Sanz, 2001)

Os paso un vídeo donde podéis observar cómo trabajan estas dragas. Espero que os guste.

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Grúa de puerto giratoria “pico de pato”

pico de patoEstas grúas de puerto mantienen la cota de la carga por medio de un sistema de articulaciones que hace que la pluma de la grúa funcione como un mecanismo. El desplazamiento del pórtico y el giro de la superestructura es similar a las giratorias de cable compensado.

El giro se consigue mediante un grupo moto-reductor fijado en el lateral del castillete y una corona dentada fija en la parte superior del pivote.  Este dispositivo permite un giro de 360º controlado por la botonera de mando. Este mecanismo, además de hacer girar la superestructura de la grúa, debe controlar el momento de vuelco debido a la excentricidad de la carga y peso propios.

El mecanismo que mantiene la cota de la carga es automático, de forma que no es necesario actuar sobre el cable de elevación. El movimiento de cambio de alcance, al igual que el resto de movimientos que caracterizan este modelo de grúa, se realiza mediante manipuladores progresivos y electroválvulas proporcionales, dotando a la grúa de movimientos con velocidad variable y controlada. La cabina de control se sitúa en la parte frontal de la superestructura.

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Manipulación de contenedores en puertos

Figura 1. Contenedores de 40 pies en un buque portacontenedores. Wikipedia

Un contenedor o container (en inglés) es un recipiente de carga para el transporte marítimo o fluvial, transporte terrestre y transporte multimodal. Se trata de unidades estancas que protegen las mercancías de la climatología y que están fabricadas de acuerdo con la normativa ISO (International Standarization Organization), en concreto, ISO-668.

Los muelles de los puertos traen de serie una serie de elementos (infraestructura básica) con los cuales pueden cambiar el tipo de transporte (marítimo-terrestre). Estos elementos no son los más eficientes, así que se recurre al mercado para conseguir una maquinaria especializada y con ello optimizar el tiempo, lo que a la larga supondrá económicamente positivo (a pesar de la gran cantidad que habrá que desembolsar para comprar dichos equipos).

Figura 2. Contenedor de 10 pies. Wikipedia.

Entre los equipos especializados en la manipulación de los contenedores, podemos destacar los siguientes:

  • Grúa pórtico (Gantry crane): Grúa que consta de un puente elevado o pórtico soportado por dos patas a modo de un arco angulado, con capacidad para desplazar los contenedores en los tres sentidos posibles (vertical, horizontal y lateralmente), maniobrando sobre raíles (Rail Gantry Crane o Trastainer) o sobre neumáticos (Rubber Tire Gantry, RTG) en un espacio limitado.
  • Grúa apiladora de alcance (Reacher-staker crane): Permiten alcanzar con contenedores estibas de uno sobre tres y formar bloques de hasta cuatro filas.
  • Grúa de puerto (Quay crane o Portainer): Grúa con la que se introducen los contenedores en un barco portacontenedores.
  • Carretilla pórtico: Carretilla elevadora para la manipulación de los contenedores en las terminales portuarias.
  • Sidelifter: Camión grúa con elevador lateral, utilizado para la carga y descarga de contenedores en vagones de ferrocarril.

Os dejo a continuación algunos vídeos donde podemos ver la manipulación de contenedores por varias de las máquinas mencionadas. Espero que os gusten.

Carretilla portacontenedores:

Grúa portacontenedores:

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Algo sobre cajones flotantes

Cajones flotantes de hormigón en Marín (Pontevedra), ejecutados por Sacyr

Los cajones flotantes constituyen estructuras de grandes dimensiones que por su sección transversal aligerada – multicelular – pueden flotar una vez terminadas. Eso les confiere una gran versatilidad en cuanto a construcción (mediante hormigonado deslizante), transporte flotando y colocación en la obra portuaria, ya sea para muelles, diques u otros. Las infraestructuras típicas que emplean este tipo de cajones son los muelles y otras estructuras de atraque, los diques de abrigo verticales y los diques especiales tipo flotante. Este tipo de estructura flotante es una tipología ampliamente empleada en la construcción de diques en los puertos españoles. Son, sin duda, las mayores piezas prefabricadas de hormigón, con moles que pueden llegar a más de 10.000 m3 de hormigón.

Desde el punto de vista económico, existen razones para apoyar la construcción de diques flotantes. En efecto, el ahorro más significativo que ofrecen estas estructuras frente a los diques rompeolas, o los de gravedad, se da en grandes profundidades, ya que su coste de construcción es prácticamente independiente de la profundidad, mientras que el de un dique en talud crece exponencialmente con la misma. Este ahorro se debe fundamentalmente al ahorro de volumen de escollera y materiales de relleno, respecto a los diques en talud o a las banquetas de los diques verticales.

Las condiciones y limitaciones que presenta el cálculo necesario para la fabricación de los cajones flotantes están relacionadas, fundamentalmente con las importantes las interacciones entre los pesos de los elementos en construcción y los empujes de los elementos flotantes, pues de ellas se derivan los posibles riesgos como son la pérdida de estabilidad, riesgos de varada en el fondo, etc. Asimismo,  los criterios con los que se fijan los parámetros de cálculo son, fundamentalmente, los siguientes: estabilidad hidrostática del conjunto cajón-pontona, presión suficiente entre cajón y pontona para asegurar el contacto durante la construcción y el mantenimiento de un francobordo mínimo para proteger al hormigón en el fraguado y que no afecte a la estabilidad del cajón.

Cajón flotante remolcado hasta su posición final. http://www.dragados.com/upload/MONACO%205.jpg

Para aquellos de vosotros interesados, existen algunas referencias que pueden informar del estado actual de los avances tecnológicos a este respecto. Así, por ejemplo, un hito en este tema es el “Manual para el diseño y la ejecución de cajones flotantes de hormigón armado para obras portuarias”, editado por Puertos del Estado en el año 2006 (ISBN: 84-88975-55-4). En este manual se ofrecen a los usuarios los criterios necesarios para el diseño, construcción y mantenimiento de cajones de hormigón armado, con la aplicación específica de la EHE y la consideración de las recomendaciones del programa ROM.

Asimismo, se consideran muy interesantes las referencias relativas a algunas realizaciones en el ámbito nacional o internacional. Así, las primeras obras de cajones que se construyeron en España lo fueron en el muelle de Levante del Puerto de Huelva, en 1932, con 8 m de calado máximo. En los años 80 se generalizó la construcción de obras de atraque de cajones aprovechando el auge de los puertos comerciales y en la década de los 90 se extendió su uso en la construcción de diques verticales. A modo de ejemplo, la prolongación del Muelle de Poniente de Palma de Mallorca necesitó la fabricación de siete cajones flotantes que se fabricaron en Cartagena y se remolcaron unas 250 millas. La referencia se puede ver en Sáenz et al (1996): “Fabricación y remolque de los cajones de hormigón para la prolongación del muelle de Poniente en el puerto de Palma de Mallorca”, Revista de Obras Públicas, 143(3357):57-68. La realización en los últimos años de diques verticales de 28 m de calado en la dársena de Escombreras en Cartagena hace que la tecnología de nuestro país sólo sea equiparable a la de Japón.

Otro aspecto importante es la verificación de la armadura de cortante exigida a la norma EHE. La experiencia acumulada indica que es normalmente innecesaria esta armadura, aunque la norma EHE la imponga.  Un análisis al respecto puede verse en el artículo de Pita, Grau y Pérez sobre el diseño de cajones flotantes (http://www.fhecor.es/files/ARW/ES_OBRASPORTUARIAS.pdf). También sería resaltable el trabajo de investigación realizado por el CEDEX en relación con el comportamiento del hormigón de los cajones flotantes, en la zona de carrera de mareas. Los resultados pueden verse en la revista Puertos, en su número 136 del año 2006 (http://www.puertos.es/export/download/ROM_PDFs/RecomendaCAJONES.pdf).

Una de las referencias importantes a nivel internacional es la guía práctica del PIANC(1994). “Floating breakwaters. A practical guide for design and construction.” Report of the Working Group nº 13 of the Permanent Technical Committee II. Supplement to bulletin nº 85. Permanent International Association of Navigation Congresses. Otra referencia normalmente empleada es la de Michael L. Giles and Robert M. Sorensen (1978). “Prototype scale mooring load and transmission tests for a floating tire breakwater”. Technical paper nº. 78-3. U.S. ARMY, CORPS OF ENGINEERS. COASTAL ENGINEERING RESEARCH CENTER.

Resulta de interés citar una de las realizaciones más ambiciosas a nivel internacional. Se trata del mayor dique flotante del mundo, realizado en el Puerto de Algeciras para ampliar el puerto deportivo de la Condamine en el Principado de Mónaco, que comportó una larga travesía por aguas del Mediterráneo. Las características de este hito se pueden ver en un artículo firmado por Barceló, Hue y Peset en la Revista de Obras Públicas, en su número 3432 de abril del 2003 (pp. 81-110). Bastan, pues, unas cuantas referencias en cuanto a la bibliografía y a las realizaciones para comprobar que la tecnología necesaria para la construcción de cajones flotantes está consolidada, siendo España un referente a nivel internacional.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Procedimiento constructivo de una terminal de contenedores en Cádiz

La construcción de una terminal de contenedores requiere la suma de procedimientos constructivos variados y complejos que deben ser coordinados adecuadamente en un entorno complejo como es el marino: dragados, escollera, cajones flotantes, hormigón sumergido, rellenos, precarga de suelos, etc.

El proyecto adjudicado de una terminal de contenedores en Cádiz, por un importe de 91 millones de euros, comprende en una primera fase el desarrollo de una nueva terminal con una superficie de 22 ha, con una longitud de muelle de 590 m, un dique de abrigo de 320 m y un calado de 16 m. La nueva terminal se ubicará entre el dique de Levante y el muelle número 5 de Navantia y el plazo de ejecución previsto es de tres años y medio.

El proyecto adjudicado combina los sistemas constructivos de escollera, cajones y bloques cúbicos de hormigón e incluye el dragado de las zonas colindantes necesarias para las maniobras de los buques y aseguramiento del calado. Entre las magnitudes que ilustran las dimensiones del proyecto destacan que  el dragado de 3,2 millones de metros cúbicos; más de 100.000 metros cúbicos de hormigón y un total de 8.000 bloques cúbicos de 12 toneladas cada uno, además de 1,1 millones de materiales procedentes de cantera; y más de 4 millones de kilos de acero.

Para tener una visión general de estos trabajos, os dejo una magnífica animación en 3D de la empresa Proin 3D para la propuesta ganadora que el grupo ACCIONA-FCC Construcción propuso para la ejecución de la Nueva Terminal de Contenedores de Cádiz.

Espero que también os guste el vídeo que anuncia la adjudicación del proyecto.