UPV



Resultados de la búsqueda By Etiquetas: puentes-2


Cimentación mediante cajones de aire comprimido

Disposición general de un cajón neumático (adaptado de Wilson y Sully, 1949)

Un cajón es una estructura que hundida a través  del terreno o del agua permite colocar la cimentación a la profundidad de proyecto, y que posteriormente pasa a formar parte de la estructura definitiva. Estos cajones pueden ser de fondo abierto o de fondo cerrado (ver cajones flotantes). Nos centraremos en este post en los cajones de fondo abierto en las que existe una cámara de trabajo sometida a una presión superior a la atmosférica para impedir que el agua entre en la excavación. Se trata de las cimentaciones mediante cajones neumáticos o de aire comprimido.

Alguien puede preguntarse a qué viene un post sobre una técnica que tiene riesgos evidentes de ejecución y que ya en un artículo de Presa y Eraso (1970) nos avisaba que era una técnica en trance de desaparecer. Hoy día existen procedimientos (por ejemplo pilotes de gran diámetro) que son más sencillos de construir, suficientemente seguros, rápidos y económicos que permiten evitar riesgos innecesarios, especialmente los procesos de compresión y descompresión que requieren tiempos suficientes, tal y como ocurre en los trabajos realizados por los buzos o submarinistas. Pues bien, razones históricas y docentes nos llevan (más…)

9 septiembre, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Puentes de acero inoxidable

Harry Brearley (1871-1948)

El acero inoxidable, inventado en la primera década del siglo XX por Harry Brarley, presenta características de resistencia a la corrosión que los diferencia de los aceros convencionales al carbono. Estos aceros presentan un contenido mínimo de un 11% de cromo, aunque suele añadírsele también níquel. El acero inoxidable no es un material desconocido, aunque como se verá a continuación, ha sido poco empleado en obras civiles. Se puede encontrar en usos domésticos o en amplios usos industriales como plantas químicas, componentes de automoción o aeronáutica. Baddoo (2008) indica que el consumo mundial de acero inoxidable ha crecido al 5% anual durante los últimos 20 años, sobrepasando el crecimiento de otro tipo de materiales. Respecto a los últimos adelantos en los aceros inoxidables en cuanto a material, se recomienda la revisión realizada por Lo et al. (2009).

No sólo el aspecto estético, (más…)

8 septiembre, 2016
 
|   Etiquetas: ,  ,  |  

Aplicación de metaheurísticas en la optimización de pasos superiores de carreteras

Artesa-Img6122Resumen–El artículo se ocupa de la optimización económica de los tableros de los pasos superiores de carreteras formados por una losa de hormigón ejecutada in situ y dos vigas artesa prefabricadas de hormigón pretensado autocompactable. Se comprueba la eficacia de las distintas metaheurísticas aplicadas en la optimización: “descent local search” (DLS), “simulated annealing” (SA), “threshold accepting” (TA), “genetic algoritms” (GA) y “memetic algorithms” (MA). Los cálculos de las tensiones y de sus envolventes, son programados en lenguaje fortran  directamente por los autores. Los algoritmos de optimización heurística se aplican a un tablero de 35 m de luz y 12 m de ancho. Los parámetros que definen la forma de la sección de la viga se adaptan a los moldes de una instalación de prefabricados. El ejemplo que se analiza consta de 59 variables discretas. El módulo de la evaluación incluye los estados límite último y de servicio que se aplican comúnmente para estas estructuras: flexión, cortante, torsor, fisuración, flechas, etc. Los algoritmos SA y TA se han calibrado previamente a partir del DLS, y el MA a partir del GA y del SA. Cada heurística se procesa nueve veces, obteniéndose información estadística sobre el valor mínimo, el medio y las desviaciones. Se realiza un análisis del rendimiento de las distintas heurísticas, basado en un estudio de las soluciones Pareto-óptimas entre tiempo de ejecución y rendimiento. Los mejores resultados se obtienen para el SA y el TA, siendo el coste mínimo de 108008 €, correspondiente al SA. Finalmente, entre las principales conclusiones de este estudio, destaca que las soluciones y los tiempos de proceso computacional son tales, que estos métodos se pueden aplicar de un modo práctico a casos reales, y que el conocimiento derivado del uso de estos algoritmos permiten  recomendar rangos de valores para emplearlos en el diseño optimizado de estas estructuras y en su aplicación para los predimensionados de las variables.

Palabras clave—Optimización, metaheurística, puentes, pasos superiores, diseño de estructuras.

Referencia: MARTÍ, J.V.; YEPES, V.; GARCÍA-SEGURA, T. (2015). Aplicación de metaheurísticas en la optimización de pasos superiores de carreteras. X Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados – MAEB 2015, 4-6 de febrero, Mérida, pp. 241-247. ISBN: 978-84-697-2150-6.

1 septiembre, 2016
 
|   Etiquetas: ,  ,  ,  |  

Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety

Sin título

ACCESO LIBRE AL ARTÍCULO:

The following personal article link, which will provide free access to your article, and is valid for 50 days, until September 14, 2016

http://authors.elsevier.com/a/1TROAW4G4Bhqk

Abstract: This paper presents a multiobjective optimization of post-tensioned concrete road bridges in terms of cost, CO2 emissions, and overall safety factor. A computer tool links the optimization modulus with a set of modules for the finite-element analysis and limit states verification. This is applied for the case study of a three-span continuous post-tensioned box-girder road bridge, located in a coastal region. A multiobjective harmony search is used to automatically search a set of optimum structural solutions regarding the geometry, concrete strength, reinforcing and post-tensioned steel. Diversification strategies are combined with intensification strategies to improve solution quality. Results indicate that cost and CO2 emissions are close to each other for any safety range. A one-euro reduction, involves a 2.34 kg CO2 emissions reduction. Output identifies the best variables to improve safety and the critical limit states. This tool also provides bridge managers with a set of trade-off optimum solutions, which balance their preferences most closely, and meet the requirements previously defined.

Keywords

  • Multiobjective optimization;
  • CO2 emissions;
  • Safety;
  • Post-tensioned concrete;
  • Box-girder bridge;
  • Multiobjective harmony search

Highlights

  • A multiobjective optimization of post-tensioned concrete road bridges is presented.
  • A computer tool combines finite-element analysis and limit states verification.
  • Output provides a trade-off between cost, CO2 emissions, and overall safety factor.
  • Near the optima, a one-euro reduction represents a 2.34 kg CO2 emissions reduction.
  • Results show the cheapest and most eco-friendly variables for improving safety.

Reference:

GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.

Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos

VigasArtesas_09Esta es la versión post-print de autor. La publicación se encuentra en: http://hdl.handle.net/10251/46928, siendo el Copyright de Elsevier.

El artículo debe ser citado de la siguiente forma:

Martí, JV.; Yepes, V.; Gonzalez-Vidosa, F.; Luz, AJ. (2014). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 30(3):145-154. doi:10.1016/j.rimni.2013.04.010.

Descargar (PDF, 856KB)

Antecedentes y motivación del proyecto de investigación BRIDLIFE

BCH001La sostenibilidad constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global debido a las emisiones de gases de efecto invernadero y las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar nuestra generación. La concentración de CO2, alcanzó un máximo sin precedentes en 2013, con el mayor incremento anual en 30 años (World Meteorological Organization, 2014), por lo que la economía baja en carbono se perfila como una línea estratégica de gran importancia. Las actividades humanas son las principales responsables de este problema, provocando un desarrollo alejado de satisfacer las necesidades de las generaciones presentes sin comprometer las necesidades de las generaciones futuras, que constituye el núcleo del paradigma de “desarrollo sostenible” (Brundtland, 1987).

La construcción juega un papel fundamental en el desarrollo de la sociedad. Influye fuertemente en la actividad económica, el crecimiento y en el empleo. Sin embargo, es una actividad que impacta significativamente en el medio ambiente (Marí, 2007), presenta efectos irreversibles y puede comprometer el presente y futuro de la sociedad. Este sector consume hasta un 60% de las materias primas extraídas (Vital Signs, 2005), generando su transformación sobre el 50% de todas las emisiones de CO2. En Europa, el 30% de los residuos proceden de la construcción y la demolición; consumiendo la industria y la construcción un 42% de la energía total de (Pacheco-Torgal y Jalali, 2011). Son datos que muestran la brecha de mejora posible en esta industria para acercarse a la sostenibilidad. No basta con construir de forma económica y eficiente, sino que debe ser socialmente aceptable, debe ahorrar recursos naturales no renovables y respetar el medio ambiente a largo plazo. Un paso en este sentido son herramientas como BREEAM, CASBEE, DGNB o LEED que certifican la sostenibilidad de las edificaciones usando parámetros objetivos. (más…)

12 julio, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Los puentes medievales españoles, ¿con cuál te quedas?

Puente de Cangas del Narcea (Asturias). Fotografía de V. Yepes.

Puente de Cangas del Narcea (Asturias). Fotografía de V. Yepes.

La visión de la Edad Media como una época tenebrosa supone ignorar el sorprendente progreso de la innovación y el saber técnico. Si bien es cierto que la caída del Imperio Romano y la caída de un poder central provocaron una caída drástica en la construcción. El inicio del nuevo milenio vino parejo al desarrollo de las ciudades y de la expansión comercial; se empiezan a construir nuevos puentes, en paralelo con las catedrales góticas. Esta actividad constructiva se reforzó con los caminos de peregrinaje hacia Roma y Santiago de Compostela, donde los monjes constructores tuvieron un papel de primera magnitud. Si se comparan con los puentes romanos, los medievales olvidan reglas estrictas en cuanto a su diseño, con arcos asimétricos, plantas curvas o quebradas, tímpanos aligerados, etc. Los medievales eran puentes pintorescos, atrevidos en ocasiones, pero de menor calidad y solidez que los romanos. La labra de los sillares en los puentes medievales es más tosca y defectuosa que la de los romanos. Los arcos suelen ser macizos, con bóvedas formadas por anillos paralelos unos a otros o bien dos roscas en los extremos con un relleno entre sí.

Sin entrar en más detalles, os propongo un concurso. Si te atreves, incluso puedes dedicar tus vacaciones a hacer un recorrido para fotografiarlos y luego nos lo cuentas. He publicado en Twitter un conjunto de puentes representativos del medievo español. No están todos, ni mucho menos. Puedes incluir los que quieras con la etiqueta #Puentes_medievales . Se trata de retuitear aquellos que más te gusten o incorporar nuevos puentes. Aunque muchos se llaman popularmente “puentes romanos”, gran parte de ellos son medievales. Otros también se denominan “Puentes del Diablo“. Algunos se han rehabilitado o restaurado y han perdido parte del diseño original. Empezamos, pues. No se trata de votar la foto más bonita o al puente de tu pueblo, sino al que creas que estéticamente está más logrado, poniendo en marcha tu sentido ingenieril.

(más…)

2 junio, 2016
 
|   Etiquetas: ,  ,  ,  ,  |  

El profesor Dan M. Frangopol de estancia con nosotros en la Universitat Politècnica de València

Tenemos la gran suerte de contar con el profesor Dan M. Frangopol como profesor visitante en la Universitat Politècnica de València. Se trata de una estancia que solicitó nuestro grupo de investigación dentro del proyecto de investigación BRIDLIFE y que también ha sido apoyada por nuestra universidad. Es una magnífica oportunidad de poder colaborar en líneas de investigación que confluyen en la optimización multiobjetivo de estructuras a lo largo de su ciclo de vida. Ya estuvo nuestra investigadora Tatiana García Segura cuatro meses de estancia en la Universidad de Lehigh.

El curriculum y la trayectoria académica del profesor Frangopol es impresionante. Es el primer titular de la Cátedra Fazlur R. Khan de Ingeniería Estructural y Arquitectura de la Universidad de Lehigh, en Bethlehem, Pensilvania. Antes de incorporarse a esta universidad, fue profesor de ingeniería civil en la Universidad de Colorado en Boulder, donde ahora es profesor emérito. Sus líneas de investigación se centran en la aplicación de los conceptos probabilísticos y métodos de la ingeniería civil tales como la fiabilidad estructural, el diseño basado en la probabilidad y la optimización de edificios, puentes y barcos navales, vigilancia de la salud estructural, mantenimiento y gestión a lo largo de su ciclo de vida, gestión de infraestructuras en condiciones de incertidumbre, evaluación basada en el riesgo, sostenibilidad y resistencia a los desastres.

De acuerdo con el ASCE (Sociedad Estadounidense de Ingenieros Civiles) “Dan M. Frangopol is a preeminent authority in bridge safety and maintenance management, structural system reliability, and life-cycle civil engineering. His contributions have defined much of the practice around design specifications, management methods, and optimization approaches. From the maintenance of deteriorated structures and the development of system redundancy factors to assessing the performance of long-span structures, Dr. Frangopol’s research has not only saved time and money, but very likely also saved lives… Dr. Frangopol is a renowned teacher and mentor to future engineers.”

A parte de cuatro doctorados honoris causa, el profesor Frangopol presenta un índice h de 54 y más de 11900 citas (Google Scholar, 2015). Ha dirigido más de 40 tesis doctorales y ha sido profesor visitante en numerosas universidades de todo el mundo. Lo mejor es que veáis su currículum entero en su página web: http://www.lehigh.edu/~dmf206/

Os dejo a continuación los seminarios y conferencias que impartirá este mes en la Universitat Politècnica de València. Si tenéis alguna duda, me podéis enviar un correo electrónico. La entrada es libre. Os iré contando en sucesivos posts más sobre nuestra actividad este mes con el profesor Frangopol.

Descargar (PDF, 108KB)

Enfilado de las armaduras activas de un puente

Enfilando cables de pretensado. Youtube.

El enfilado consiste en la colocación de la armadura dentro de la vaina, pudiéndose realizar esta operación antes o después de colocar la vaina en posición. Enfilar antes suele hacerse en taller, para elementos no muy largos, pero en el caso de un puente, suele hacerse con la vaina ya colocada. El enfilado de la armadura activa de un puente se suele realizar el día anterior al hormigonado para evitar los riesgos de un posible abollamiento o rotura de la vaina durante el hormigonado. En cualquier caso, hay que evitar tiempos prolongados entre el enfilado y la puesta en tensión de los cables.

Para realizar el enfilado se precisa de la bobina de acero de pretensar y de una  enfiladora. Una vez montada la bobina de cordón en la devanadora se procede al enfilado de los distintos cordones que constituyen un tendón mediante la enfiladora. La enfiladora es una máquina de tracción mecánica que empuja de forma semicontinua el torón de pretensar al interior de la vaina. En cualquier caso, por la parte delantera se dispone de un elemento esférico o con punta redondeada para que no se produzcan muescas o entallas en la vaina. Siempre se debe dejar aproximadamente un metro en cada extremo del tablero para que el gato pueda realizar las operaciones de tesado. Durante esta operación, la enfiladora se debe fijar lo mejor posible para evitar desplazamientos. Además, El especialista que maneja la enfiladora debe estar perfectamente comunicado con el operario situado en el extremo contrario con el fin de indicar la parada de la máquina.

Enfiladora. Fuente: http://www.tecpresa.es/

Suele ocurrir que el último torón que se debe enfilar para completar los necesarios en una vaina puede ser difícil de enfilar, especialmente si el diámetro de esta vaina es muy justo. Lo que suele hacerse es soldar dos torones a uno que ya esté enfilado y se tira del extremo contrario del torón ya enfilado para introducir los otros dos que hemos soldados. Sin embargo, es preferible elegir un diámetro de vaina suficiente pare evitar estos problemas. En el extremo de cada cable se coloca una pieza metálica en forma de bala que evita que se desfleje y dañe la vaina.

Una vez realizado el enfilado de todos los cables, se debe repasar el trazado en alzado de las vainas para comprobar que no han perdido su posición durante el enfilado. Suele taparse el metro que sobresale por cada extremo se tapa con bolsas de plástico para evitar la caída de mortero durante el hormigonado del tablero, lo que dificultaría el tesado de la unidad al requerirse una limpieza cuidadosa que, obviamente, se evita protegiendo con bolsas de plástico.

Es muy habitual observar cómo el acero de pretensar pierde el color gris metálico si se deja la bobina a la intemperie durante unos días. Esto no es problema alguno dado que la capa de óxido superficial es pasivizante y no supone corrosión alguna de la armadura. Este comentario es extensivo a armaduras pasivas y vainas de pretensar. En la figura vemos cómo la bobina se coloca en un bastidor fijo al suelo para que la bobina no se mueva durante el traqueteo que supone el enfilado.

Detalle de la bobina del acero de pretensado

Detalle de la bobina del acero de pretensado

Os dejo un par de vídeos donde podéis ver cómo se enfilan los cables para el postesado del puente.

 

27 octubre, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

¿Cómo nos enseñan las luciérnagas a diseñar puentes?

Lampyris noctiluca – hembra. Wikipedia

La Naturaleza es más sabia de lo que sospechamos. Quién diría a un ingeniero estructural que una simple luciérnaga sería capaz de sonrojarle e incluso enseñarle trucos para diseñar puentes, no sólo más baratos, sino también más respetuosos con el medio ambiente. Pues bien, no sólo es cierto, sino que es podemos aprender del comportamiento social de las luciérnagas para optimizar estructuras. Efectivamente, las luciérnagas se comportan como colectivo de forma inteligente. Las luciérnagas basan su comportamiento social en la luminosidad que emiten (luciferina). La característica más distintiva de las luciérnagas es su cortejo nocturno. Los machos patrullan en busca de pareja con un vuelo característico mientras emiten secuencias de destellos de luz característicos de cada especie. Las hembras de la misma especie pueden responder con destellos específicos y así el apareamiento puede ocurrir. En resolución de problemas, la luminosidad de una luciérnaga depende de la calidad de la solución encontrada y la distancia desde donde las otras compañeras están buscando soluciones. Cada luciérnaga selecciona, utilizando un mecanismo probabilístico, un vecino que tiene un valor más alto de luciferina que su propio y se mueve hacia él. De esta forma, se pueden optimizar puentes.

Dentro del proyecto de investigación HORSOST, nos acaban de aceptar un artículo científico en la revista Automation in Construction, que es una revista de primer nivel en el ámbito de la tecnología de la construcción (Factor de impacto en 2013: 1,822, posición 9 de 58 en el ámbito de Construction & Building Technology, y posición 19 de 124 en el ámbito de Civil Engineering, en función del impacto de las revistas indexadas en el JCR).

Artesa-Img6122En este trabajo se describe una metodología para minimizar las emisiones de CO2 y los costes de puentes de carretera de vigas de hormigón pretensado prefabricadas con sección transversal en doble U. Para ello se ha utilizado un algoritmo híbrido de optimización por enjambre de luciérnagas (glowworm swarm optimization, GSO) y el recocido simulado (simulated anneling, SA), que se hemos denominado SAGSO. La estructura se define por 40 variables, que determina la geometría, los tipos de materiales y las armaduras de la viga y de la losa. Se utiliza hormigón de alta resistencia autocompactante en la fabricación de las vigas. Los resultados suponen para los ingenieros proyectistas una guía útil para el predimensionamiento de puentes prefabricados de este tipo. Además, los resultados indican que, de media, la reducción de 1 euro en coste permite ahorrar hasta 1,75 Kg en emisiones de CO2. Además, el estudio paramétrico realizado muestra que las soluciones de menor coste presentan un resultado medioambiental satisfactorio, que difiere en muy poco respecto a las soluciones que provocan menores emisiones.

Resultados interesantes:

  • El coste C, en euros, y las emisiones de CO2, en kg varían de forma parabólica con la luz (L) del vano, en metros:

C=48.088L2+613.99L+31139

kgCO2=63.418L2+2392.3L+13328

  • Si se minimiza el coste, también se reducen las emisiones de CO2, de forma que el ahorro en 1 euro equivale a ahorrar 1,75 kg de CO2.
  • La esbeltez de los puentes de mínimo coste (L/18.08) y de mínimas emisiones (L/17,57) siempre son inferiores a L/17.
  • El espaciamiento entre las vigas se sitúa en torno a 5,85 m, oscilando entre 5,65 y 5,95 m.
  • Las estructuras de coste mínimo precisan 42,35  kg/m2 de armadura pasiva, mientras que si se optimizan las emisiones, se necesitarían 37,04  kg/m2.
  • Sorprende observar que, aunque parece que el hormigón de alta resistencia sería el adecuado para el prefabricado de las vigas, las estructuras óptimas se alejan de este supuesto. De hecho el hormigón para el coste mínimo en las vigas prefabricadas oscila entre 40 y 50 MPa, alejado de los 100 MPa que permitía la optimización.
  • Por último, un análisis de sensibilidad de costes en los resultados optimizados indica que un aumento del 20% en los costes del acero haría que el coste total de la estructura aumentara un 10,27%, disminuyendo el volumen de acero empleado. Sin embargo, si sube un 20% el precio del hormigón, el coste total sólo subiría un 3,41% y no variaría apenas el volumen consumido de hormigón.

 

Referencia:

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2014). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)

4 noviembre, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Entrada siguiente Previous Posts

Universidad Politécnica de Valencia