UPV



Resultados de la búsqueda By Etiquetas: puentes-2


Proceso de construcción del viaducto de Lanjarón

Lanzamiento del Puente de Lanjarón. Torroja Ingeniería

Os paso una animación realizada por José Antonio Agudelo que muestra el proceso constructivo del Viaducto de Lanjarón en Granada, España. Se trata de un puente mixto, proyectado por Torroja Ingeniería, siendo un arco atirantado por su propio tablero que sólo transmite reacciones verticales al terreno.

Los datos más interesantes del puente son: 112,6 m de luz y 15 m de altura. En las referencias os dejo un artículo de Mario García González que explica los detalles del viaducto. Lo interesante del procedimiento constructivo es que, en una primera fase de empuje, el puente queda en voladizo un 50%, y en una segunda fase se realiza un tiro para dejar la estructura en su emplazamiento definitivo.

Referencias:

García-González, M. (2002). Viaducto de Lanjarón. II Congreso de ACHE de puentes y estructuras. link

1 diciembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Construcción de puentes empujados

Puente construido por empuje

El procedimiento consiste en fabricar o montar el tablero detrás del estribo y después empujarlo deslizándolo sobre las pilas hasta alcanzar su posición definitiva al llegar al otro estribo. Este tablero, también puede componerse mediante dovelas prefabricadas u hormigonadas “in situ”. El método del empuje ha permitido resolver satisfactoriamente la construcción de puentes sobre obstáculos importantes situados por debajo del tablero. Este procedimiento es particularmente ventajoso en los puentes muy largos, pues permiten aplicar la construcción industrializada -es rentable a partir de los 600 metros de longitud-.

Este sistema constructivo fue desarrollado en la segunda mitad del siglo XIX para ubicar en su situación definitiva grandes viaductos metálicos de celosía. De hecho, la ligereza de los tableros metálicos y mixtos es una ventaja sobre los de hormigón, mucho más pesados; sin embargo es habitual la construcción de estos puentes con hormigón pretensado. Los puentes de ferrocarril, en particular, son estructuras idóneas para construirlas mediante empuja, pues han de soportar, además de su peso propio, unas cargas de servicio elevadas que obligan a dimensionar secciones con una gran capacidad resistente. Al construir el puente, donde sólo actúa el peso propio, el exceso de capacidad puede aprovecharse sin sobredimensionar la estructura.

Pescante de lanzamiento en Papiol (Barcelona). http://www.cemetasa.com/

El primer viaducto de hormigón empujado fue el Puente de Ager en Austria en 1959, donde se usaban dovelas cortas prefabricadas; sin embargo, muchos autores citan el puente sobre el río Caroní (Venezuela), terminado en 1964, de Leonhardt y Baur como iniciadores de esta técnica con el hormigón. Posteriormente se consolidó el método de dovelas largas hormigonadas “in situ” en una instalación industrializada que se monta detrás del estribo, aunque sigue siendo habitual el empleo de dovelas de entre 10 y 25 metros de longitud, tanto fabricadas “in situ” como prefabricadas.

El campo de luces óptimo para los tableros empujados se encuentra entre los 30 y 60 metros, aunque de forma excepcional dicho intervalo se amplia desde los 20 a los 90 metros.

Muchas empresas españolas han realizado puentes empujados (Ferrovial, Dragados, FCC, etc.), y seguro que me dejo a alguien por nombrar. Como ejemplo de construcción de puentes empujados, os dejo un vídeo sobre la construcción de uno de los puentes más largos empujados del mundo. Lo construyó ACCIONA para el Ministerio de Transporte de Quebec (Canadá). La autopista consta de 42 kilómetros de longitud y dos carriles por sentido. La obra incluye la ejecución de dos puentes -uno de 1.860 metros sobre el río St.Lawrence y otro de 2.550 metros sobre el canal Beauharnois- el segundo puente empujado más largo del mundo; donde se ha conseguido superar la dificultad de la traza en cambio de altura y dirección horizontal. Os dejo un enlace a las características técnicas. Ha obtenido dos de los premios más relevantes del sector concesional el Gold Award concedido por The Canadian Council for Public-Private Partnerships y el North America Deal of the Year, por PFI.

Dejo aquí el cómo se realizó el lanzamiento en el viaducto de Millau.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

2 noviembre, 2017
 
|   Etiquetas: ,  ,  |  

Construcción de puentes por dovelas mediante cimbras autoportantes

858802_331527263630484_1482261224_oUna forma interesante de construir un puente con dovelas prefabricadas es mediante un pórtico auxiliar que permite la sujección de estas dovelas en un vano determinado. Las cimbras autoportantes suelen emplearse en puentes con muchos vanos de luces moderadas. Se trata de una viga metálica que se apoya en las pilas del puente y que permite la construcción completa de uno o varios vanos. Posteriormente la cimbra se traslada horizontalmente apoyándose el las pilas del puente hasta el vano siguiente. Este procedimiento permite un ritmo elevado de construcción, similar al de las vigas prefabricadas. La amortización de estos medios exige aproximadamente cuatro usos de los mismos en obras de similares características con longitudes superiores a los 300 metros, aunque existe la posibilidad para el contratista de alquilar estos equipos posteriormente.

Para ver este procedimiento constructivo, os dejo la siguiente animación que creo es de interés:

A continuación podemos ver un vídeo realizado por voxelestudios del proceso constructivo del tablero de los viaductos de Contreras, que con autocimbras se ejecutaron tramos de luces de 66 m.

5 octubre, 2017
 
|   Etiquetas: ,  ,  ,  |  

Apoyos deslizantes para el lanzamiento de puentes

apoyo deslizante

Apoyo deslizante, con almohadillas de neopreno-teflón. Fuente: Óscar Ramos, 2010

El procedimiento de tableros empujados consiste en fabricar o montar el tablero detrás del estribo y después empujarlo deslizándolo sobre las pilas hasta alcanzar su posición definitiva al llegar al otro estribo. Para que ello sea posible, el tablero del puente debe deslizarse en todos los puntos donde se apoya, ya sean pilas, estribos o en el parque de fabricación. Estos apoyos, que en principio eran rodillos, hoy son de neopreno-teflón, que ofrecen poca fricción y una excelente distribución de las cargas verticales. Los apoyos pueden ser provisionales o definitivos. Los primeros se usan sobre apoyos auxiliares o en el parque de fabricación. Sobre las pilas pueden ser también provisionales, en cuyo caso se sustituyen posteriormente, o bien definitivos, con un segundo nivel deslizante que se utiliza durante el lanzamiento del tablero.

Apoyo

Apoyos de neopreno-teflón. Fuente: http://nisee.berkeley.edu/leonhardt/html/incrementally_launched_bridges.html

El apoyo provisional se monta sobre un bloque de hormigón de unos 15-35 cm de espesor, fuertemente armado y nivelado. Sobre el hormigón se dispone una chapa de acero inoxidable pulida y plana sobre la que se disponen las almohadillas de neopreno-teflón, de 10-13 mm de espesor. El teflón se apoya sobre el acero inoxidable y el neopreno contacta con el tablero. Además, el apoyo dispone de una guía lateral, también con almohadillas de neopreno-teflón, que encarrila al tablero en su movimiento longitudinal.

El movimiento del tablero arrastra la almohadilla, que cae por delante y se vuelve a introducir por detrás. Esta operación se realiza manualmente, por lo que se debe prestar especial atención a los posibles errores durante las 2-3 horas que dura la operación del lanzamiento del tramo correspondiente.

El coeficiente de rozamiento entre la almohadilla y el acero inoxidable, en el momento del arranque, puede llegar al 5% en tiempo frío, pero una vez en movimiento, baja al 3-3,5%. Para reducir la carga horizontal sobre el apoyo, se reducen al máximo las almohadillas, pues el rozamiento se reduce con la presión. Para soportar la carga vertical, se zuncha intensamente el neopreno para soportar unos 20 MPa. Además, conviene lubricar las almohadillas con silicona y mantenerlas limpias, con lo que se puede bajar el rozamiento al 1-2%.

Los apoyos provisionales se sustituyen por los definitivos subiendo el tablero con gatos. Esto mismo se debe hacer incluso cuando los apoyos deslizantes son definitivos, puesto que se debe bloquear el nivel de deslizamiento usado durante el lanzamiento, quitar las almohadillas y soldar la parte superior del apoyo a chapas metálicas dejadas en el tablero.

Os dejo a continuación un vídeo donde se observa el lanzamiento del tablero.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

25 septiembre, 2017
 
|   Etiquetas: ,  ,  |  

Montaje de vigas artesa en pasos superiores

ala014Las vigas artesa prefabricadas constituyen elementos de sección en forma de U abierta con alas hacia el exterior de la viga. Este tipo de estructuras supuso un salto tecnológico en la prefabricación de los años 80 del siglo XX. Conforman una sección celular cerrada, situada entre la sección en cajón y la doble T. Se emplean para luces de pilas entre 25 y 45 m con vanos simplemente apoyados, llegando hasta los 60 m con vanos en cantilever. Lo habitual es disponer un par de piezas en sección transversal, con separaciones entre 5,5 y 6,5 m, con anchos de tablero entre 11,0 y 14,0 m. Son habituales los cantos de 1/20 de la luz, con cantos típicos entre 0,80 y 2,60 m. También es una sección muy adecuada para tableros de puentes de AVE, con un ancho de tablero de 14,0 m.

ala004 (más…)

12 junio, 2017
 
|   Etiquetas: ,  ,  ,  |  

Algunas conclusiones obtenidas del proyecto BRIDLIFE sobre puentes postesados en cajón

A punto de terminar el proyecto de investigación BRIDLIFE, a continuación se exponen algunas conclusiones de interés fruto de dicho proyecto y de la tesis doctoral y publicaciones de la profesora Tatiana García Segura. Son pequeñas “píldoras” de conocimiento que pueden ser de interés para proyectistas e investigadores relacionados con los puentes, el hormigón, la sostenibilidad y la optimización. Son las siguientes:

  1. A pesar de la reducción de durabilidad por carbonatación y la menor captura de CO2, los cementos con adiciones resultan beneficiosos desde el punto de vista ambiental [1].
  2. Mientras el uso del hormigón reciclado como árido afecta a las propiedades del hormigón y requiere en muchos casos un incremento en el contenido de cemento, la reutilización del hormigón como material granular de relleno permite una completa carbonatación del hormigón que reduce las emisiones de CO2 [1].
  3. Se puede mejorar la seguridad estructural de los puentes en cajón con un pequeño incremento de coste siempre que se escojan las variables adecuadas [2]. Este incremento de coste no es constante para todos los niveles de seguridad. Se pueden establecer diferentes puntos, a partir de los cuales resulta más caro mejorar la seguridad estructural [2].
  4. No se aconseja aumentar el espesor de la losa superior para mejorar la seguridad de los puentes en cajón, ya que ello conlleva un aumento de peso innecesario [2]. Sin embargo, el espesor de las alas en el arranque es un aspecto clave para mejorar la flexión transversal [2].
  5. A pesar de que se ha considerado la inclinación del alma como variable de optimización, su valor óptimo apenas difiere para distintos valores de seguridad.  Esto se debe a que tanto el canto como el ancho de inclinación del alma aumentan en paralelo para mejorar la seguridad estructural [2].
  6. El uso de hormigón de alta resistencia en puentes no muestra ventajas económicas a corto plazo, pues las restricciones de servicio y armadura mínima no permiten reducir el canto y la cantidad de armadura [2]. Sin embargo, el hormigón de alta resistencia retrasa el inicio de la corrosión [3] y mejora el rendimiento estructural una vez se ha iniciado la corrosión [4]. Si se diseñan estructuras con hormigones de alta resistencia se consiguen mejores resultados durante el ciclo de vida que con diseños que tienen mayores recubrimientos, a pesar de tener el mismo inicio de corrosión [4].
  7. Los diseños que tienen una mayor durabilidad tienen un mayor coste inicial pero un menor coste de ciclo de vida [4].
  8. Los resultados muestran que tanto la optimización del coste como de las emisiones de CO2 reducen el consumo de material. Por tanto, la optimización del coste es una buena estrategia para conseguir estructuras más ecológicas [2,5,6].
  9. Para gestionar el mantenimiento de las estructuras de forma sostenible se debe tener en cuenta tanto el coste y las emisiones de reparación, como el impacto que produce el desvío de tráfico sobre los usuarios de la vía [4].
  10. La optimización del mantenimiento indica que no se debe optimizar cada superficie por separado, sino que se debe coordinar el mantenimiento de todas las superficies para reducir el coste y las emisiones que ocasiona el desvío del tráfico [4].

Referencias:

[1]          T. García-Segura, V. Yepes, J. Alcalá, Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, Int. J. Life Cycle Assess. 19 (2014) 3–12. doi:10.1007/s11367-013-0614-0.

[2]         T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Eng. Struct. 125 (2016) 325–336. doi:10.1016/j.engstruct.2016.07.012.

[3]         T. García-Segura, V. Yepes, D.M. Frangopol, Multi-objective design of post-tensioned concrete road bridges using artificial neural networks, Struct. Multidiscip. Optim. 56 (2017) 139–150. doi:10.1007/s00158-017-1653-0.

[4]         T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Lifetime reliability-based optimization of post-tensioned box-girder bridges, Eng. Struct. 145 (2017) 381–391. doi:10.1016/j.engstruct.2017.05.013.

[5]         T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Eng. Struct. 92 (2015) 112–122. doi:10.1016/j.engstruct.2015.03.015.

[6]         J.V. Martí, T. García-Segura, V. Yepes, Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, J. Clean. Prod. 120 (2016) 231–240. doi:10.1016/j.jclepro.2016.02.024.

5 junio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  |  

Comunicaciones presentadas al VII Congreso Internacional de Estructuras de ACHE

Los días 20 al 22 de junio de 2017 tendrá lugar en A Coruña el VII Congreso Internacional de Estructuras de ACHE. En 1999 se celebró el I Congreso de ACHE y con la elección de los vocales del nuevo Consejo se cerró el período transitorio abierto dos años antes. Este Congreso se realizó en Sevilla y le siguieron los de Madrid 2002, Zaragoza 2005, Valencia 2008, Barcelona 2011 y Madrid 2014. Nuestro grupo de investigación, dentro del proyecto de investigación BRIDLIFE, presenta varias comunicaciones. A continuación os paso los resúmenes. Nos veremos pronto en el Congreso.

YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V.; ALCALÁ, J.; PELLICER, E. (2017). Puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos: Proyecto BRIDLIFE

El objetivo del proyecto BRIDLIFE consiste en desarrollar una metodología que permita incorporar un análisis del ciclo de vida de vida de puentes de hormigón pretensado definiendo un proceso de toma de decisiones que integre los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio. Los resultados esperados pretenden detallar qué tipologías, actuaciones de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos, dentro de una política de fuerte limitación presupuestaria que compromete seriamente la construcción y conservación de las infraestructuras.

GARCÍA-SEGURA, T.; YEPES, V. (2017). Diseño eficiente de puentes con criterios sostenibles multiobjetivo

Este estudio presenta un método de diseño de puentes eficientes que minimiza el coste y las emisiones de CO2, mientras maximiza la seguridad estructural. Para ello, se proponen ocho módulos que unen un programa comercial de análisis por elementos finitos con un programa de control que lleva a cabo la optimización multiobjetivo y verificación de los estados límite. Mediante esta metodología, el ingeniero puede escoger los parámetros que se mantienen fijos y las variables a optimizar. Finalmente, el programa proporciona una frontera de Pareto representada por las soluciones de equilibrio entre los criterios.

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V. (2017). Estudio de la aplicación de los métodos de decisión multicriterio al ciclo de vida de los puentes

Las diferentes etapas del ciclo de vida de un puente –proyecto, construcción, uso y mantenimiento, y reciclado y demolición- requieren elegir entre distintas alternativas posibles que dependen de múltiples criterios como pueden ser los económicos, los medioambientales o los sociales. El propósito de este estudio consiste en examinar los métodos de decisión multicriterio utilizados en las diferentes fases del ciclo de vida de un puente. La metodología empleada ha sido la aplicación de una técnica multivariante de análisis de correspondencias para identificar los huecos existentes en la investigación. Los resultados indican que los métodos de decisión analítico-jerárquicos se han aplicado ampliamente en las fases de proyecto, construcción y uso y mantenimiento. Sin embargo, la fase de demolición o reciclado es la menos estudiada, asociándose principalmente a métodos de procesos analíticos en red.

LÓPEZ-VIDAL, A.; YEPES, V. (2017). BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón

En un contexto social y reglamentario cada vez más exigente, coexisten tres tendencias que se presentan como una inmejorable oportunidad para la consolidación definitiva de las soluciones prefabricadas de hormigón como la variante industrializada de la construcción de edificios e infraestructuras, con todas las ventajas que ello proporciona en términos de rapidez de ejecución, control más exhaustivo en proyecto y obra, calidad, precisión dimensional, eficiencia y rentabilidad económica.

MARTÍ, J.V.; YEPES, V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Diseño de pasos superiores de carreteras con criterios de sostenibilidad aplicando algoritmos heurísticos

Este artículo se centra en el diseño de los pasos superiores de carreteras de vigas artesa prefabricadas pretensadas. En la práctica, las vigas se colocan centradas a la sección de la losa, y el diseño geométrico de las vigas es independiente de las luces entre apoyos. Para la optimización del coste y del consumo energético se aplica el algoritmo híbrido SAMO2. Se realiza un estudio paramétrico para distintas luces de vano -20, 25, 30, 35 y 40 m-, obteniéndose correlaciones para el coste, el consumo energético, la geometría de las secciones y del armado, y que al aumentar la luz, la separación de las vigas se reduce y el ángulo de las almas aumenta.

MOLINA-JOTEL, V.; ALCALÁ, J.; MARTÍ, J.V.; YEPES, V. (2017). Diseño de pasarelas de hormigón postesado de sección en T mediante optimización heurística bajo criterios económicos y de sostenibilidad

El trabajo se ocupa del diseño y optimización automática de pasarelas de hormigón postesado con sección en T bajo criterios económicos (coste) y de sostenibilidad (emisiones de CO2 y energía consumida), empleando la técnica heurística de optimización del recocido simulado (SA). Se desarrolla un código de programación de diseño y comprobación estructural que permite determinar mediante un proceso automático la factibilidad de las soluciones y el coste económico y medioambiental. Se concluye que la optimización bajo cualquiera de los tres objetivos proporciona soluciones aceptables para los otros dos, demostrando la no conflictividad entre ellos.

MOLINA-MORENO, F.; RÓDENAS, A.; YEPES, V.; MARTÍ, J.V. (2017). Análisis del ciclo de vida de muros de contención de tierras de hormigón armado con contrafuertes y muros pantalla

La presente comunicación muestra la evaluación de impactos ambientales durante la ejecución de dos tipologías d muro de contención de tierras: muro con contrafuertes y muro pantalla. Se ha analizado la relación de contribución de cada flujo de entrada (extracción de materiales y proceso de construcción) sobre el impacto total. El análisis proporciona un orden de magnitud entre materiales y cada una de las categorías de impacto, y representa un aporte útil hacia los objetivos de economía circular en la ingeniería estructural.

1 junio, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Optimización multiobjetivo basada en fiabilidad del ciclo de vida de un puente en cajón postesado

Fuente: http://www.freyssinet.es/wp/?cat=3

Os presentamos un artículo, que se ha editado en formato abierto, donde se ha realizado la optimización a lo largo de su ciclo de vida de un puente en cajón postesado basándose en fiabilidad. Para ilustrar la metodología, se ha utilizado como ejemplo un puente situado en una zona costera y, por tanto, sometido a la corrosión por ambiente marino. Se ha optimizado el puente con múltiples objetivos simultáneos: el coste, las emisiones totales de CO2 (incluyendo la recarbonatación), el inicio de la propagación de la corrosión y la seguridad. Primero se ha construido una frontera de Pareto con todas las soluciones óptimas con los múltiples objetivos y luego se ha estudiado el mantenimiento del puente, optimizando este mantenimiento atendiendo a criterios económicos, sociales y ambientales. Este artículo se enmarca dentro del proyecto de investigación BRIDLIFE. Espero que os sea de interés el artículo, que lo podéis descargar gratuitamente y compartir sin problemas (open-access).

Referencia:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

 

Descargar (PDF, 1.23MB)

 

26 mayo, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Puentes y pasarelas de polímero reforzado con fibras

Pasarela sobre el AVE en Lérida. 2001 Proyecto de PEDELTA. Arco biapoyado de 38 metros de luz y 3 de ancho. Elementos atornillados.

Pasarela sobre el AVE en Lérida. 2001 Proyecto de PEDELTA. Arco biapoyado de 38 metros de luz y 3 de ancho. Elementos atornillados.

Los nuevos materiales compuestos basados en polímeros reforzados con fibras (PLR), están presentes en casi todos los objetos de nuestra vida diaria. También se usan en el mundo de la construcción: elementos estructurales, cerramientos opacos o traslúcidos, sanitarios, pavimentos, conducciones, elementos de instalaciones eléctricas, etc.

La historia de los plásticos podría iniciarse en 1839 con la vulcanización de la goma por Charles Goodyear, aunque los olmecas ya lo hacían hace 3500 años. En 1860 Parker patenta la parkesita, el primer celuloide. En 1869 Hyatt descubre el celuloide. En 1907 Baekeland descubre la baquelita, primer polímero sintético, y así hasta nuestros días.

Los PRF se empezaron a utilizar en la industria aeronáutica desde la década de los sesenta, pero ya en este siglo se están empezando a utilizar en los proyectos de puentes y pasarelas. Desde la construcción del primer puente de polímeros en Asturias en 2004, en España se han hecho realizaciones en otros sitios como Madrid o Cuenca, entre otros.

Suelen ser estructuras híbridas, donde se combinan elementos tradicionales con nuevos materiales. En general son de dos tipos: (más…)

23 mayo, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

(Demoler) y construir un puente en sólo 80 horas

El método de construcción acelerada de puentes tiene un gran arraigo en Estados Unidos, y sólo se puede llevar a cabo mediante el empleo de soluciones industrializadas. Este caso que traemos es llamativo, pues la demolición del puente anterior y su restitución por uno nuevo, sólo necesitó 80 horas para realizarlo, en lugar del año aproximado que hubiera tardado en caso de haberlo realizado enteramente por la vía tradicional. En su construcción, se recurrió al empleo de elementos prefabricados de hormigón que conformaron un único vano de 36 metros, mediante losas prefabricadas de cierre, muros de contención, pretiles y losas peatonales. Con este ejemplo, se ilustra una vez más que una construcción rápida y ordenada, es la ideal para la creación de pasos elevados nuevos o reposición de los antiguos, y normalmente acaba siendo la solución más económica al término de la obra. Y es que cuanto más tarde una construcción en realizarse, los gastos (personal, grúas, plataformas elevadoras de personal, otra maquinaria, imprevistos, etc.) más se disparan, sin contar con el perjuicio ocasionado para las zonas contiguas (desvíos provisionales del tráfico, atascos, etc.) que también repercuten social y económicamente.

Os paso un vídeo que me ha recomendado Alejandro López (ANDECE) para que lo veáis:

18 mayo, 2017
 
|   Etiquetas: ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia