UPV



Resultados de la búsqueda By Etiquetas: puente-atirantado


Construcción de puentes atirantados con tirantes fabricados “in situ”

Figura 1. Puente de Morandi (Génova). https://commons.wikimedia.org/wiki/File:Genova_ponte_Morandi.jpg#/media/File:Genova_ponte_Morandi.jpg

La tragedia del colapso de un tramo del puente de Morandi en Génova (Italia), el 14 de agosto de 2018, me sugiere escribir esta entrada. Se trata de explicar cómo se construyen los puentes atirantados cuando los tirantes se fabrican “in situ”. Como se puede ver, la técnica usada en los puentes atirantados de Morandi, si bien fue novedosa en su tiempo, en este momento es una técnica que no se utiliza en la construcción de este tipo de estructuras.

Un puente atirantado consiste en un tablero soportado por cables rectos e inclinados, llamados tirantes, que se fijan en los mástiles. Existen multitud de tipos de tirantes, unos formados por barras, otros por hilos paralelos, otros por torones y por último el cable cerrado. Sin embargo, el sistema de tirante de torones es el que se está imponiendo debido a sus ventajas en cuanto a anclaje y protección contra la corrosión. Solo el tirante de cable cerrado, el más antiguo de los sistemas, aún convive con el sistema de torones, si bien están en desuso debido a su menor capacidad de carga y mayor precio.

Los tirantes pueden dividirse en dos grandes grupos atendiendo a su montaje, los fabricados “in situ” y los prefabricados.

Aunque ya no se recurre al sistema de montaje de tirantes “in situ”, vamos a describir aquí las distintas formas de fabricar en obra tirantes compuestos. Así, en el puente japonés de Toyosato-Ohashi los tirantes se montan hilo a hilo, de forma parecida a los cables de los puentes colgantes. También se pueden hacer los tirantes con hormigón pretensado, como los utilizados por Morandi en sus puentes. Otro procedimiento sería enfilar los tirantes torón a torón dentro de una vaina de polietileno para inyectar posteriormente lechada de cemento. El principal problema de este procedimiento es el hormigón, puesto que los cables se montan fácilmente.

Figura 2.Puente de Toyosato-Ohashi (Japón). By Nkns (Nkns took a photograph.) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.1 jp (https://creativecommons.org/licenses/by-sa/2.1/jp/deed.en)], via Wikimedia Commons

Sin embargo, la forma actual de construir tirantes en obra es con vaina inyectada, pues no sólo es más fácil de montar, sino que puede utilizarse cualquier tipo y tamaño de tirante, siendo un procedimiento económico. Las vainas más usadas hoy en día son de polietileno, por su facilidad de montaje, si bien las metálicas permiten la inyección de una sola vez al admitir mayores presiones.

Figura 3. Puente General Urdaneta, sobre el lago Maracaibo (Venezuela). By The Photographer – Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=29236260

Se pueden utilizar dos procedimientos diferentes en el caso de la construcción de tirantes “in situ” con vaina inyectada. Se pueden anclar los cables a la torre y al tablero, o bien se pueden hacer pasar los cables por una silla en la torre. En el primer caso, es fácil enfilar los cables, pero se complica el diseño de la torre por el cruce de vainas y el alojamiento de los anclajes.

Tras situar la vaina, se enfilan los cables en su interior subiendo la bobina del cable por encima del anclaje superior. Mediante una enfiladora se lleva el cable hasta el anclaje inferior. Después se corta el cable a la salida de la bobina y se fija al anclaje superior. Se le da una tensión mínima para garantizar que todos los cables lleven la misma tensión. Tras el enfilado, se tensa el tirante del conjunto de cables o tirando hilo a hilo, siendo más cómodo tesar desde lo alto de la torre. Por último, se inyectan los anclajes mediante resina y a continuación se inyecta la vaina mediante lechada de cemento. En el puente de Sama de Langreo se retesaron los tirantes desde la torre, mientras que en el de Barrios de Luna, se hizo desde el tablero.

Si se pasan los cables por una silla en la torre, formada por un tubo curvo, los cables se empujan desde un anclaje hasta llegar al otro, o bien mediante un cable piloto que tire de uno o varios cables.

Como resumen de lo anterior, se puede comprobar cómo el sistema utilizado por Morandi en la construcción del puente de Génova no se utiliza en la actualidad. Con todo, la tragedia de este puente nos debe hacer reflexionar sobre la necesidad de destinar recursos suficientes al mantenimiento y monitorización de las infraestructuras críticas (puentes, carreteras, presas, edificios, etc.).

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

15 agosto, 2018
 
|   Etiquetas: ,  ,  ,  ,  |  

El derecho de autor en las obras de ingeniería: El puente Fernando Reig en Alcoy

Puente Fernando Reig, antes de la remodelación. By RafaMiralles (http://taxialcoy.net) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

Todos los creadores tienen derecho a que se reconozca su obra y a que esta perdure con la idea con la que fue concebida. Este es un aspecto con múltiples facetas, pues se podría discutir sobre los derechos de imagen y marca, los derechos morales del autor, el plagio, la autoría propia o compartida por un equipo, etc. Pero a mí me interesa en este momento hablar del derecho a la integridad de una obra. No pretendo un análisis jurídico, sino simplemente reflexionar sobre este tema en el caso del puente Fernando Reig en Alcoy (Alicante). Mi interés es múltiple, no solo por ser alcoyano, ingeniero de caminos y catedrático de ingeniería de la construcción, sino porque debería abrirse un fuerte debate sobre este tema.

Contextualicemos el problema: en abril de 1987, un flamante puente atirantado, el viaducto atirantado con mayor luz del mundo construido mediante tablero prefabricado, se inauguraba por el entonces ministro de Obras Públicas Javier Sáinz de Cosculluela. El proyecto lo suscribieron los ingenieros de caminos José Antonio Fernández Ordóñez, Julio Martínez Calzón, Manuel Burón Maestro y Ángel Ortíz Bonet. La estructura la realizó Dragados y Construcciones, S.A., según proyecto y dirección de obra de IDEAM, S.A. consultora de PACADAR, especializada en hormigones prefabricados y poseedora de la patente Freyssinet para hormigones pretensados. El puente fue el atirantado de mayor luz construido en ese momento con elementos prefabricados. En aquel año, el que suscribe estaba a punto de terminar su carrera de ingeniero de caminos, y un puente como éste, en su pueblo natal, era un auténtico acontecimiento. Desgraciadamente, la rotura de uno de los tirantes en el 2016 provoca el cierre del puente. En verano de 2017 comenzaron los trabajos de destensado, desmontaje y sustitución de los tirantes existentes, después de la rotura de uno de los tirantes. Tras 20 meses de obras, el ministro Íñigo de la Serna presidió la nueva inauguración del puente, cuyo coste de arreglo ronda los 12 millones de euros. Independientemente del debate, necesario y profundo, respecto a la durabilidad de las actuales infraestructuras y de su mantenimiento, lo que ahora me interesa es hablar del concepto que inspiró el puente y si se ha respetado su espíritu.

Quisiera, por tanto, traer a colación y de forma textual, lo que José Antonio Fernández Ordóñez (1933-2000), uno de los autores del proyecto , comentaba acerca de su obra (recogido por José Ramón Navarro Vera, 2009):

El efecto estético conseguido en este puente es- en términos kantianos- sublime. La pila surge desde lo profundo del barranco como el único gran elemento vertical de la obra y, por tanto, entroncando simbólicamente -como principio organizador- con toda la tradición constructiva desde los menhires prehistóricos y obeliscos egipcios hasta nuestro siglo. La pila se prolonga hacia lo alto en un gran arco triunfal con un sentido simbólico idéntico al de su viejo y grandioso antepasado romano del puente de Alcántara, donde asimismo un gran arco triunfal corona y remata la alta pila central, lo que puede considerarse heterodoxo desde el punto de vista estético al disponer vanos pares“. (J.A. Fernández Ordóñez, 1988)

Este primer párrafo que saco a colación demuestra claramente que este puente fue concebido con una idea clara sobre lo que se quería. No valía cualquier puente. Tenía que ser uno muy particular, capaz de competir con el catálogo de puentes incomparables que la ciudad de Alcoy tenía hasta ese momento: el puente de Cristina, el viaducto de Canalejas o el puente de San Jorge. Este puente no tenía una luz que hiciera necesaria la tipología de puente atirantado, pues funcionalmente se podría haber resuelto con un simple puente viga, mucho más económico. Por tanto, el objetivo no era simplemente construir un puente, sino construir “el puente” capaz de enriquecer el patrimonio monumental urbano de la ciudad. Pero sigamos con el siguiente párrafo:

“Sobre la gran pila (línea del movimiento ascendente) se asienta el tablero prácticamente horizontal (línea de reposo). Ambas líneas se combinan con la máxima pureza respetando el principio sagrado de eje y simetría que organiza el conjunto. El color diferenciado del hormigón de la pila (rosa idéntico al de las rocas de las montañas adyacentes) y el hormigón del tablero (gris muy claro del hormigón) también contribuye a una mejor lectura del doble deseo simbólico de ambas líneas: la vertical, vínculo con el cosmos, y la horizontal, línea de reposo y de unión con la tierra, quedando ambos vínculos unidos, como la propia esencia del hombre, por el conjunto de familias de cables tensos que simbolizan la imposible utopía de querer ascender hacia lo alto al mismo tiempo que se avanza hacia adelante unido a la tierra. Con esta solución la ciudad de Alcoy completa la magnífica colección de puentes de que dispone”. (J.A. Fernández Ordóñez, 1988)

Poesía pura. Seguro que más de un alcoyano, tras leer este párrafo, contempla este puente de otra forma. Nada falta, nada sobra.

En la Memoria del Proyecto del puente se hace una mención especial al pilono principal, un pórtico de hormigón armado formado por dos fustes rectangulares, ligeramente inclinados en la sección transversal, con un travesaño superior y un travesaño intermedio por debajo del tablero. La pila tiene una altura aproximada de unos 90 m, estando su punto superior 50 m por encima de la rasante del tablero. Tal y como se dice en dicha memoria: “La pila central es el elemento fundamental del puente y, sin ella, todo el concepto estructural y estético perdería  su sentido“. El material de la pila está cuidadosamente descrito para alcanzar su objetivo: un hormigón especial formado por un cemento portland gris muy claro con áridos y arenas rojas, y posteriormente tratado al chorro de arena. Con ello se consigue un color rosa, como ya ha comentado su autor, muy parecido al de la piedra de sillería del cercano puente Cristina, lo cual añade aún más singularidad a lo que ya son las enormes dimensiones y potente forma de la pila. Además, se eligió pintar en color gris la parte inferior de los tirantes hasta la altura de la barandilla para no distorsionar la línea horizontal del tablero.

¿Por qué entonces destrozamos la idea, la transformamos y la empeoramos? ¿Qué derecho tenemos a quebrar el lenguaje visual que, con tal alto contenido conceptual nos quería transmitir el autor con su obra?

Tras la renovación, el puente luce “prácticamente nuevo”, con una capa de pintura blanca en pilas, tirantes y tablero que desgarra la idea y concepción estética buscada por su autor. Se podrán argumentar razones técnicas, de durabilidad o de cualquier otro tipo. Pero estoy convencido de que se podría haber respetado la obra según la concibió su creador. No me atrevo, ni quiero, poner la imagen del renovado puente, de un blanco nuclear que hiere la vista. Quien quiera verlo, que lo busque en internet.

Acabo con una cita que el propio José Antonio Fernandez Ordóñez señalaba al inicio de su artículo:

El hecho artístico no debe juzgarse ni defenderse: solamente comprenderse

(Julius Schlosser)

Referencias:

Navarro Vera, J.R. (editor) (2009). Pensar la ingeniería. Antología de textos de José Antonio Fernández Ordóñez. Colección ciencias, humanidades e ingeniería. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Radio Alcoy. “Se podría haber cuidado más el espíritu del puente”, 5 de junio de 2018, http://www.radioalcoy.com/News/New/se-podria-haber-cuidado-mas-espiritu-del-puente

Entrevista en Radio Alcoy:

 

Efecto del voladizo en la construcción de puentes atirantados

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León)

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León). Fotografía de V. Yepes.

La construcción del tablero de un puente atirantado puede realizarse mediante voladizos parciales que pueden construirse en obra o bien pueden ser prefabricados. El procedimiento constructivo es similar al de la construcción de tableros de puentes tipo viga, con la diferencia de que aquí se van montando los tirantes para fijar las estructuras parciales, que se van montando con grúas o similar.

En este tipo de procedimiento constructivo es necesario considerar que la estructura parcial formada por el voladizo en el frente de avance provoca en numerosas ocasiones esfuerzos sobre el tablero mayores de los que va a tener cuando el puente esté en servicio. Es por ello que estos voladizos se reducen en su dimensión lo máximo posible, aumentando con ello el número de tirantes necesarios.

Atirantado momentos 1

Ley de flectores antes de tesar la dovela. Dibujo: V. Yepes.

La diferencia de esfuerzos entre la estructura parcial y la definitiva son, entre otros, los siguientes:

  1. La estructura final tiene presenta un tablero continuo, que muestra un comportamiento estructural diferente al caso de tener los extremos en voladizo durante la construcción.
  2. El tablero definitivo se encuentra en un estado de compresión axil importante, superior al tablero en proceso de construcción, a excepción del centro del vano principal y de los extremos de los vanos de compensación, el tablero presenta un estado.
  3. El voladizo en construcción debe soportar al siguiente elemento hasta que se monta, además del peso de los medios auxiliares si el montaje se realiza desde la parte ya construida.
  4. El momento flector del voladizo se prolonga más allá de la ménsula libre, con un máximo que se sitúa varios tirantes atrás, dependiendo del peso del tablero, de los medios auxiliares y de las rigideces del dintel y tirantes.

 

Para solucionar este efecto contraproducente del voladizo se pueden aplicar varios procedimientos constructivos:

  1. Se puede reforzar el voladizo mediante un pretensado adicional para reducir los momentos máximos del voladizo. Este exceso de carga debe retirarse en cuanto pase el efecto del voladizo para evitar sobreesfuerzos en la estructura. Este proceso de tesado y destesado puede complicar la construcción, por lo que a veces se sobredimensionan los materiales en el dintel o se sobretesan los tirantes, tal y como se hizo en el puente de Barrios de Luna.
  2. Se puede reducir peso en el voladizo si se construye una parte del tablero. Una vez se atiranta, y tras un desfase en el ciclo de avance, se completa su construcción. Este método se ha utilizado mucho, por ejemplo en el puente de Oberkassel, en Düsseldorf, que presenta tirantes muy separados. Aquí se avanzó sólo con la célula central del cajón, procedimiento que también se utilizó en el puente Flehe, cerca de la misma ciudad. En el puente de Annancis (Canadá) se avanzaba con vigas metálicas laterales y transversales, hormigonándose después la losa.
  3. Otra posibilidad es cimbrar el voladizo hasta que se atirante. Se puede atirantar provisionalmente el carro de avance hasta el hormigonado, tal y como se hizo en el puente sobre el río Waal (Holanda). Otra posibilidad menos costosa y fácil es la cimbra convencional que obliga a inmovilizar el extremo de la zona construida, lo que obliga a soportar una gran parte del peso de la dovela anterior. Esta solución se ha empleado en el puente de Sama.
  4. Cuando la distancia entre tirantes es grande, se pueden colocar tirantes provisionales desde la torre definitiva o mediante torres auxiliares. Las torres provisionales se apoyan en el mismo lugar de los anclajes definitivos anteriormente montados para evitar flexiones adicionales. El atirantamiento se traslada sucesivamente según avanza la construcción. Este procedimiento se usó en el puente Kniebrucke en Düsseldorf.
  5. Otra posibilidad que se aleja del procedimiento de construcción por voladizos sucesivos consiste en disponer apoyos provisionales bajo el tablero, o bien un único apoyo en el extremo del voladizo que se eliminará al colocar los tirantes. Así se construyó el puente de Bratislava sobre el Danubio.

Puente de Oberkassel sobre el Rhin, en Düsseldorf. Fuente: https://commons.wikimedia.org/wiki/File:Oberkassel_Bruecke.jpg

 

Puente Flehe sobre el Rhin, cerca de Düsseldorf. Fuente: https://commons.wikimedia.org/wiki/File:Fleher_Br%C3%BCcke-2.jpg

 

Puente Kniebrucke en Düsseldorf sobre el Rhin. Fuente: https://de.wikipedia.org/wiki/Rheinkniebr%C3%BCcke#/media/File:Duesseldorf_1915.JPG

 

Puente de Bratislava, sobre el Danubio. Fuente: https://en.wikipedia.org/wiki/Cable-stayed_bridge#/media/File:Novy_Most_d.JPG

Referencias:

FERNÁNDEZ-TROYANO, L. (1999). Tierra sobre el agua. Visión histórica universal de los puentes. Colegio de Ingenieros de Caminos, Canales y Puertos. Colección de Ciencias, Humanidades e Ingeniería nº 55, Madrid.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

23 octubre, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Proceso constructivo del nuevo puente sobre la bahía de Cádiz

El Puente de La Pepa, diseñado por el ingeniero Javier Manterola, será uno de los puentes europeos de mayor altura  con un gálibo de 69 m y 3,15 km de longitud total. Será un puente atirantado con unas torres que tendrán 180 m de altura. Será también el segundo puente marítimo de mayor gálibo vertical del mundo, después del de Verrazano Narrows de Nueva York y por delante del Puente Golden Gate de San Francisco. Dará acceso a la ciudad de Cádiz desde el continente, en el término de Puerto Real, convirtiéndose en el tercer acceso a la ciudad, junto con el istmo a San Fernando y el Puente Carranza. Será un puente de gran capacidad de comunicaciones, con tres carriles de autovía por sentido y dos vías férreas, por las que transitará el Tranvía Metropolitano de la Bahía de Cádiz.

Su construcción ha sido contratada a la Unión Temporal de Empresas (UTE), formada por Dragados y DRACE (Construcciones Especiales y Dragados). El proyecto tiene un presupuesto de 273 millones de euros, y su plazo de ejecución se estimó en su momento en 42 meses. Sin embargo, diversos problemas económicos están retrasando la obra.

 

Debido a la singularidad de la obra, os dejo un vídeo explicativo que espero que os guste. (más…)

2 agosto, 2014
 
|   Etiquetas: ,  ,  ,  ,  |  

Universidad Politécnica de Valencia