Proceso Analítico Jerárquico (Analytic Hierarchy Process, AHP)

Figura 1. Thomas L. Saaty (1926-2017)

En numerosas ocasiones contamos con muy poca información o tenemos que tomar una decisión teniendo en cuenta aspectos cualitativos que son difíciles de valorar. Para solucionar este tipo de problemas, muy habituales en situaciones reales, el profesor Thomas L. Saaty propuso en la década de los 70 un método denominado Analytic Hierarchy Process (AHP), que se ha traducido al español como Proceso Analítico Jerárquico. Este método multiatributo, nacido como respuesta a problemas concretos de toma de decisiones en el Departamento de Defensa de los Estados Unidos, hoy día se aplica habitualmente a casi todos los ámbitos de la empresa, la economía o la investigación de operaciones, entre otros muchos.

En apretada síntesis, AHP es un método que selecciona alternativas en función de una serie de criterios o variables, normalmente jerarquizados, los cuales suelen entrar en conflicto. En esta estructura jerárquica, el objetivo final se encuentra en el nivel más elevado, y los criterios y subcriterios en los niveles inferiores, tal y como se muestra en la Figura 2. Para que el método sea eficaz, es fundamental elegir bien los criterios y subcriterios, los cuales deben estar muy bien definidos, ser relevantes y mutuamente excluyentes (independencia entre ellos). Es importante  que el número de criterios y subcriterios en cada nivel no sea superior a 7, para evitar excesivas comparaciones a pares.

Figura 2. Ejemplo de estructura jerárquica AHP

Una vez definida la estructura jerárquica, se comparan los criterios de cada grupo del mismo nivel jerárquico y la comparación directa por pares de las alternativas respecto a los criterios del nivel inferior. Para ello se utilizan matrices de comparación pareadas usando una Escala Fundamental (Tabla 1). Esta es la clave del método, usar una escala de comparación por pares, puesto que el cerebro humano está especialmente bien diseñado para comparar dos criterios o alternativas entre sí, pero menos cuando tiene que hacer comparaciones conjuntas. En efecto, la Ley de Weber-Fechner establece que el menor cambio discernible en la magnitud de un estímulo es proporcional a la magnitud de dicho estímulo. Como la relación entre el estímulo y la percepción corresponde a una escala logarítmica, si un estímulo crece en progresión geométrica, la percepción evolucionará como una progresión aritmética. Es por ello que AHP utiliza una escala fundamental del 1 al 9 que ha sido satisfactoria en comprobaciones empíricas realizadas en situaciones reales muy diversas.

Tabla 1. Escala fundamental de comparación por pares (Saaty, 1980)

La comparación de las diferentes alternativas respecto al criterio del nivel inferior de la estructura jerárquica, como la comparación de los diferentes criterios de un mismo nivel jerárquico dan lugar a una matriz  cuadrada denominada matriz de decisión. Esta matriz cumple con las propiedades de reciprocidad (si aij=x, entonces aji=1/x), homogeneidad (si i y j son igualmente importantes, aij=aji=1, y además, aii= 1 para todo i), y consistencia (la matriz no debe contener contradicciones en la valoración realizada). La consistencia se obtiene mediante el índice de consistencia (Consistency Index, CI) donde λmax es el máximo autovalor y n es la dimensión de la matriz de decisión. Un índice de consistencia igual a cero significa que la consistencia es completa. Una vez obtenido CI, se obtiene la proporción de consistencia (Consistency Ratio, CR) siendo aceptado siempre que no supere los valores indicados en la Tabla 3. Si en una matriz se supera el CR máximo, hay que revisar las ponderaciones.

Donde RI es el índice aleatorio, que indica la consistencia de una matriz aleatoria (Tabla 2):

Tabla 2. Índice aleatorio RI

 

Tabla 3. Porcentajes máximos del ratio de consistencia CR

Una vez verificada la consistencia, se obtienen los pesos, que representan la importancia relativa de cada criterio o las prioridades de las diferentes alternativas respecto a un determinado criterio. Para ello, el AHP original utiliza el método de los autovalores, donde hay que resolver la siguiente ecuación:

donde A representa la matriz de comparación, w el autovector o vector de preferencia, y λmax el autovalor.

A continuación os dejo algunos vídeos de interés donde se explica el método AHP y sus aplicaciones. Espero que os sean de utilidad.

Referencias:

Saaty, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Introducción a la toma de decisiones

Figura 1. De Lou Sander – Trabajo propio, Dominio público, https://commons.wikimedia.org/w/index.php?curid=8040446

Con esta entrada voy a iniciar una serie relacionada con la toma de decisiones. Todos tomamos decisiones a cada momento. Qué hago este fin de semana, si voy a ir al gimnasio dos o tres veces a la semana, a qué hora pongo el despertador, etc. Pues este tipo de decisiones no solo son individuales, sino que las empresas, los políticos o cualquier tipo de organización la deben tomar a cada momento. En la Figura 1 tenemos un ejemplo habitual: seleccionar un líder entre tres candidatos, tomando como criterios, por ejemplo, la edad, la experiencia, la educación o el carisma. Y muchas influyen significativamente en nuestra calidad de vida, en nuestras finanzas o en nuestro futuro. Es por esto, que la toma de decisiones se ha convertido en un proceso de gran importancia al que hay que prestar atención cuando se va a realizar la elección de una solución o alternativa.

Por cierto, si alguno está interesado en este tema y quiere participar en un número especial de la revista “Mathematics” sobre “Optimization for Decision Making” que estoy coordinando junto con el profesor José María Moreno, podéis acudir al siguiente enlace: http://victoryepes.blogs.upv.es/2018/10/11/special-issue-optimization-for-decision-making/?fbclid=IwAR3im1Wk2al8T6Rxstl6yWjOIaZvRtOpyIlQiYlT-Mr6ykF3QAXR5hVNbSI

Gran parte de las decisiones que tomamos en la vida diaria la realizamos intuitivamente. Sin embargo, cuando se presenta un problema de mayor importancia y se quiere convertir la toma de decisiones en un problema racional aparece el proceso de toma de decisiones (Figura 2), el cual está comprendido por 5 fases: (1) definición del problema, (2) identificación de las alternativas, (3) determinación de los criterios, (4) evaluación de las alternativas, y (5) elección de una opción.

Figura 2. Proceso de toma de decisiones

Cuando la toma de una decisión depende de únicamente un único criterio, la solución óptima es aquella que optimiza dicho criterio. Este tipo de problema ofrece una visión parcial de la realidad, pues normalmente en la solución a un problema influyen numerosos aspectos que pueden ser contradictorios y entrar en conflicto entre sí. Aquí es donde entran en escena los problemas de decisión que tienen en cuenta dos o más criterios.

La toma de decisiones multicriterio constituye el proceso o acción que se utiliza para resolver un problema cuando son diferentes los criterios que deben considerarse. Por lo tanto, su objetivo principal es la evaluación de una serie de soluciones o alternativas Aj (i=1,2,…,n) a un problema basadas en las puntuaciones rij en relación a una serie de criterios Ci (j=1,2,…,m). La interacción entre los dos conjuntos de elementos se suele expresar como la matriz de toma de decisiones Mmn:

Figura 3. Matriz de toma de decisión

Las puntuaciones rij varían dependiendo de si el criterio evaluado es cuantitativo o cualitativo. Los criterios cuantitativos son criterios objetivos que se evalúan numéricamente, pero al tratar de realizar el mismo tipo de evaluación frente a criterios subjetivos, como son los cualitativos, la confusión aflora y se vuelve difícil asignar un valor numérico a un criterio cualitativo. Teniendo presente lo dicho, es más sencillo crear una escala de evaluación mediante términos lingüísticos que posteriormente sean asociados a valores numéricos. Un ejemplo será la utilización del Proceso Analítico Jerárquico (AHP), del cual hablaremos en su momento.

Por tanto, los criterios a evaluar pueden ser cuantitativos y cualitativos, y además dentro de cada grupo las unidades de medida pueden ser diferentes. Es por esto, que es necesario normalizar la matriz de toma de decisiones antes de evaluar las alternativas, de forma que las puntuaciones rij se conviertan en puntuaciones r’ij normalizadas. Paralelamente a la normalización de la matriz de toma de decisiones se deben obtener los pesos wi de cada criterio Ci en función de su importancia en la obtención de la meta final. Por lo tanto, la matriz de decisiones previa a la evaluación, se convierte en una matriz donde las puntuaciones rij se convierten en puntuaciones normalizadas con pesos asociados vij:

Los pesos asociados a cada criterio expresan la importancia relativa de cada uno de estos criterios, que sirven para alcanzar la valoración final de cada alternativa. La asignación de los pesos a cada criterio es un punto muy importante en la toma de decisiones, pues una pequeña variación de los mismos puede provocar que en un mismo problema, la solución final se decante por una u otra alternativa. Existe una gran variedad de métodos de asignación de pesos, que pueden considerarse objetivos o subjetivos. Pero eso lo dejamos para una entrada posterior.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.