Gestión y sostenibilidad de las playas en la Comunidad Valenciana: un análisis del turismo y la erosión costera

De Siocaw – Trabajo propio, Dominio público, https://commons.wikimedia.org/w/index.php?curid=3782634

El turismo es un pilar económico esencial para España, ya que representa el 12,8 % del Producto Interior Bruto (PNB) y el 12,6 % del empleo directo en 2023. Entre las distintas formas de turismo, el modelo de «sol y playa» ocupa un lugar privilegiado gracias a las favorables condiciones climáticas y a la riqueza natural de sus costas. En este contexto, la Comunidad Valenciana se posiciona como una de las principales zonas receptoras de turistas nacionales e internacionales gracias a sus playas, que suponen un recurso tanto económico como medioambiental.

Sin embargo, este modelo de desarrollo se enfrenta a importantes desafíos. La erosión costera, la presión urbanística y la sobreexplotación de recursos están poniendo en peligro la sostenibilidad de las playas, que constituyen el núcleo de la oferta turística de la región. Este informe, basado en el análisis de Yepes y Medina (2005), profundiza en los modelos turísticos, identifica las causas principales de la erosión costera y propone soluciones para garantizar el equilibrio entre desarrollo económico y conservación ambiental. Aunque este artículo tiene 20 años, algunos datos deberían actualizarse, su contenido sigue siendo plenamente vigente. No obstante, algunas de las conclusiones del estudio pueden sorprender a quienes no conocen este sector. Por tanto, recomiendo leer el artículo completo para comprenderlo mejor.

El turismo como motor económico

España es uno de los destinos turísticos más visitados del mundo, compitiendo con Estados Unidos y Francia, que en 2004 recibieron 85,7 millones de turistas extranjeros y generaron 37 250 millones de euros, lo que convierte al turismo en un sector clave para la economía nacional, ya que cubre más de la mitad del déficit comercial. En este contexto, la Comunidad Valenciana destaca por su litoral de 454 km y su clima privilegiado, con 4,9 millones de turistas internacionales y 15,9 millones de viajeros nacionales en 2004, que sumaron más de 151 millones de pernoctaciones, gracias a sus playas, sus 3000 horas de sol anuales y las temperaturas del agua, entre 13 °C y 29 °C.

Modelos de desarrollo turístico

El desarrollo turístico de las zonas litorales de la Comunidad Valenciana se puede dividir en dos modelos principales: intensivo y extensivo. Ambos tienen características distintivas que afectan a su impacto económico, medioambiental y social.

El modelo intensivo se caracteriza por estancias cortas en hoteles o apartamentos de alquiler, con alta densidad urbana y elevados niveles de gasto diario. Benidorm es un ejemplo destacado por su rentabilidad y sostenibilidad. Entre sus principales ventajas se encuentran una alta productividad económica, con ingresos de hasta 12 000 €/m², un menor consumo de recursos como agua, energía y suelo por turista, y la capacidad de operar durante todo el año, lo que reduce significativamente la estacionalidad.

El modelo extensivo se basa en estancias prolongadas en segundas residencias, con baja densidad urbana y un gasto diario reducido. Torrevieja es un ejemplo destacado por su predominio de viviendas vacacionales. Entre sus principales desventajas se encuentran un uso ineficiente de recursos, ya que se requieren hasta catorce veces más suelo por turista que en el modelo intensivo, altos costes en servicios públicos debido a la dispersión geográfica y baja densidad poblacional, así como una limitada capacidad para generar empleo y dinamismo económico local.

El análisis de Yepes y Medina demuestra que los modelos intensivos son superiores desde las perspectivas económica y medioambiental. Por ejemplo, un turista en un modelo intensivo consume cuatro veces menos agua y requiere un 93 % menos de superficie que un turista en un modelo extensivo. Además, los gastos diarios del modelo intensivo son un 60 % más altos, lo que contribuye a dinamizar el sector servicios y a crear empleo.

Erosión costera: una amenaza crítica

La erosión costera es uno de los mayores desafíos para el turismo y la sostenibilidad ambiental en la Comunidad Valenciana, donde se ha perdido arena a un ritmo de 3 millones de m³ al año desde la década de 1950, lo que supone la reducción de 200 000 m² de playas cada año y afecta al 58 % de sus 178 km de playas arenosas. Entre sus principales causas se incluyen la construcción de represas, como los 187 embalses del río Ebro, que han reducido casi totalmente su aporte de sedimentos, antes de 15 millones de m³ anuales; las barreras costeras, como espigones y rompeolas en los puertos de Valencia, Sagunto y Castellón, que generan desequilibrios sedimentarios; y la urbanización, que disminuye los reservorios naturales de sedimentos y agrava la erosión durante tormentas.

Propuestas de soluciones sostenibles

Las soluciones sostenibles para mitigar la erosión costera incluyen la recuperación de sedimentos fluviales mediante sistemas de bypass en presas y el drenaje de sedimentos acumulados en embalses para reabastecer las playas. También se proponen proyectos de regeneración de playas mediante la alimentación artificial con sedimentos marinos y fluviales, priorizando zonas críticas como la costa sur de Benidorm, que cuenta con 20 millones de m³ disponibles. Además, se recomienda restringir el desarrollo urbano en áreas vírgenes de la costa, implementando planes de ordenación territorial que equilibren turismo y conservación ambiental. Finalmente, se sugiere promover el modelo intensivo, replicando casos de éxito como el de Benidorm, e incentivar el uso eficiente de recursos mediante políticas y normativas específicas.

Impacto futuro de la inacción

La falta de medidas efectivas para abordar la erosión y la presión urbanística podría tener consecuencias desastrosas. Si no se actúa, las playas continuarán retrocediendo a un ritmo alarmante, y los recursos críticos, como el espacio litoral y la arena, se agotarán. Esto no solo afectará al turismo, sino también a la biodiversidad costera y al bienestar de las comunidades locales.

Conclusiones

El turismo costero en la Comunidad Valenciana es un recurso de incalculable valor económico y ambiental. Sin embargo, la erosión costera, la presión urbanística y la falta de estrategias de manejo sostenible están poniendo en peligro este modelo. Las soluciones deben centrarse en:

  • Restablecer el transporte natural de sedimentos.
  • Limitar la expansión urbana en áreas críticas.
  • Promover modelos turísticos intensivos más eficientes.

Si se implementan estas medidas, se puede garantizar la sostenibilidad a largo plazo de las playas valencianas, protegiendo su riqueza natural y asegurando su viabilidad económica para futuras generaciones.

Referencias

  • Yepes, V. & Medina, J.R. (2005). Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49, 83-88.
  • Organización Mundial del Turismo (2004). Tourism Highlights Edition 2004.

Os dejo el artículo completo para su consulta:

Descargar (PDF, 72KB)

Qué es una presa. “La via verda”, À Punt

En el programa «La via verda», de la televisión autonómica valenciana À Punt, intervine para explicar qué es una presa, sus características y su efecto laminador en caso de una avenida. Aquí dejo un pequeño resumen del vídeo, que también dejo al final para su visualización completa.

El vídeo de este programa aborda la importancia de las presas de Forata y Buseo durante el episodio de lluvias torrenciales ocurrido en la provincia de Valencia el 29 de octubre de 2024. Se explica cómo estas presas alcanzaron su capacidad máxima y tuvieron que liberar agua de manera controlada. Se proporcionan datos específicos sobre los caudales de entrada y salida, así como sobre la capacidad de almacenamiento de las presas. También se destaca el papel crucial de las presas en la reducción de las crecidas y la mitigación de las inundaciones, y se explica cómo han ayudado a evitar daños potenciales aguas abajo.

Papel fundamental de las presas durante episodios de lluvias torrenciales

Las presas son fundamentales para regular el agua, especialmente en situaciones críticas como lluvias torrenciales. Su capacidad para manejar grandes volúmenes de agua permite reducir significativamente el riesgo de desbordamientos e inundaciones y proteger las zonas cercanas. Estas infraestructuras pueden manejar caudales extremos y minimizar el impacto negativo en las zonas inundables.

Funcionamiento y contribución durante inundaciones

Las presas de una cuenca hidrográfica cumplen funciones clave, como el almacenamiento de agua y la regulación del flujo durante las lluvias intensas. Cuando se producen precipitaciones torrenciales, estas estructuras aumentan su capacidad operativa para evitar desbordamientos y proteger las zonas situadas aguas abajo. Además de suministrar agua para consumo humano y actividades agrícolas, las presas actúan como barreras contra las inundaciones, lo que demuestra su valor multifuncional en la gestión hídrica.

Reducción de zonas inundables y el efecto laminador

Una de las funciones más destacadas de las presas es su capacidad para regular el flujo de agua en función de las precipitaciones, lo que reduce el impacto de las inundaciones. Este efecto laminador reduce el caudal de agua que fluye hacia las zonas urbanas y rurales, lo que disminuye significativamente las zonas inundables. Además, la capacidad de almacenamiento de estas infraestructuras permite gestionar mejor las aguas torrenciales y evitar así daños mayores en las comunidades.

Desafíos y necesidad de adaptación ante el cambio climático

Aunque las presas han demostrado su eficacia para prevenir desastres, también entrañan riesgos si no se gestionan adecuadamente. Un fallo en una presa podría tener consecuencias catastróficas, donde se ha comparado el impacto potencial con el de un tsunami. Esto pone de manifiesto la importancia de contar con un sistema de planificación y evacuación adecuado para proteger a la población en caso de emergencias.

En un contexto de cambios climáticos extremos, con sequías severas y lluvias torrenciales alternándose, es crucial reevaluar y adaptar el uso de las presas. La planificación y el mantenimiento de estas infraestructuras deben centrarse en garantizar su resiliencia frente a condiciones climáticas variables para asegurar que sigan cumpliendo su función de manera efectiva y segura.

El vídeo del programa lo tenéis aquí. Aunque está en valenciano, mis intervenciones son en castellano. Espero que os sea de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Presas y control de inundaciones: estrategias integradas para la reducción de riesgos hídricos

Presa de Forata, en el río Magro. Fuente: Confederación Hidrográfica del Júcar

Las presas son estructuras artificiales que, en todo o en parte, limitan el contorno de un recinto enclavado en el terreno y están destinadas al almacenamiento de agua. Se trata de infraestructuras esenciales para el control de las inundaciones, especialmente dentro del marco de la Gestión Integrada de Inundaciones (GII). Las inundaciones, que representan uno de los desastres naturales más recurrentes y devastadores, se han incrementado en frecuencia e intensidad en las últimas décadas, debido en gran medida al cambio climático, la deforestación y el aumento de la urbanización en zonas vulnerables. A continuación, resumiré un artículo escrito por Luis Berga que profundiza en el papel fundamental de las presas en la gestión de los riesgos de inundación. En él se abordan sus beneficios, su funcionamiento, sus limitaciones y algunos ejemplos de su aplicación en distintos lugares.

Importancia de las presas en el control de inundaciones

A nivel global, las inundaciones representan aproximadamente el 30 % de todos los desastres naturales y son responsables de un 20 % de las muertes y de un 30 % de los daños económicos generados por eventos naturales extremos. Según el análisis del Comité Internacional de Grandes Presas (ICOLD), en el periodo comprendido entre 1975 y 2001 se produjeron cada año unas 100 inundaciones significativas, que afectaron a 150 millones de personas y causaron una media anual de 11 000 muertes. En este contexto, las presas desempeñan un papel crucial, especialmente en regiones con grandes poblaciones y actividades económicas en zonas de riesgo.

Funcionamiento de las presas en la mitigación de inundaciones

Las presas regulan el flujo de agua, especialmente en casos de caudales extremos, mediante la laminación de avenidas. Este proceso consiste en retener temporalmente el agua de los ríos o torrentes en embalses y liberarla posteriormente de forma controlada para reducir el caudal pico y minimizar los daños aguas abajo. La laminación permite que las zonas de riesgo puedan soportar caudales menores y menos destructivos, lo que protege tanto a las comunidades como a los ecosistemas circundantes.

Dependiendo de su objetivo, las presas pueden clasificarse en varios tipos en relación con su papel en la laminación de avenidas:

  1. Presas de regulación general: Su objetivo principal es el abastecimiento de agua, la generación de energía o el riego, y tienen un impacto limitado en la reducción de crecidas.
  2. Presas de usos múltiples con laminación secundaria: Estas presas consideran la laminación de avenidas como un objetivo importante, pero secundario a otros usos, como el abastecimiento de agua o la producción de electricidad.
  3. Presas de usos múltiples con prioridad en laminación: En este tipo, la laminación de avenidas es el objetivo principal, combinado con otros fines menores.
  4. Presas dedicadas exclusivamente a la laminación de avenidas: Estas presas están diseñadas exclusivamente para reducir los caudales pico durante las inundaciones, proporcionando la mayor capacidad de mitigación posible.

Cada tipo de presa cumple su función de acuerdo con las características de la cuenca y la magnitud de las crecidas, así como con el tipo de infraestructura y las necesidades de la región.

Beneficios de las presas en la gestión de inundaciones.

El impacto positivo de las presas va más allá de la mitigación de los picos de caudal. Entre los beneficios adicionales se incluyen:

  • Reducción de las áreas inundadas: Al disminuir el caudal punta, se reducen significativamente las áreas que quedan bajo el agua, con lo que se minimizan los daños en zonas urbanas, agrícolas y ecosistemas importantes.
  • Protección de infraestructuras críticas: Las presas ayudan a evitar que el agua afecte infraestructuras estratégicas como carreteras, puentes y redes de transporte, lo que a su vez permite una respuesta de emergencia más rápida y eficiente.
  • Prevención de daños económicos: Al mitigar el impacto de las crecidas, se reducen las pérdidas en propiedades y cultivos, lo que beneficia a la economía local y regional. Por ejemplo, la presa de Oroville, en EE. UU., ha evitado daños económicos valorados en más de 1300 millones de dólares en las últimas décadas.
  • Reducción de la pérdida de vidas humanas y de las afecciones a la salud: Al controlar los caudales y evitar inundaciones masivas, se minimizan los riesgos para la vida humana y se evitan problemas de salud asociados con aguas estancadas e insalubres.

Sin embargo, es importante no promover una falsa sensación de seguridad total. Aunque las presas son altamente efectivas, siempre existe un riesgo residual, especialmente en eventos climáticos extremos que pueden superar la capacidad de almacenamiento del embalse.

Ejemplos de eficacia de las presas en el control de inundaciones

Diversos casos a nivel mundial evidencian la eficacia de las presas en la gestión de inundaciones:

  • El huracán Mitch y la Presa de El Cajón (Honduras): En 1998, el huracán Mitch provocó enormes crecidas en Centroamérica, pero la presa de El Cajón retuvo un caudal de entrada de 9800 m³/s, liberando solo 1200 m³/s. Esta reducción del 88 % en el caudal punta evitó daños catastróficos aguas abajo, protegiendo a las poblaciones ubicadas en las llanuras aluviales del país.
  • El tifón Rusa en Corea del Sur (2002): Las presas en Corea del Sur redujeron el caudal pico en el río Han en un 32 % y en el río Nakdong en un 51 %, protegiendo a las ciudades y zonas agrícolas de graves inundaciones. Los embalses principales retuvieron 1,4 km³ de agua, lo que mitigó el impacto de las lluvias torrenciales.
  • Presa de Danjiangkou (China): Desde su construcción en 1968, esta presa ha evitado graves inundaciones en el río Yangtsé, reduciendo el caudal punta en un promedio del 64 % y protegiendo a la ciudad de Wuhan. La laminación de avenidas en este embalse ha transformado crecidas importantes en eventos menores, salvaguardando la vida y los bienes de millones de personas.

Limitaciones y consideraciones en el uso de presas

Pese a sus múltiples beneficios, las presas también presentan limitaciones que deben tenerse en cuenta. Algunas de las más relevantes son:

  • Riesgo de eventos extremos: En situaciones de lluvias extremadamente intensas o prolongadas, una presa puede llegar a su capacidad máxima de almacenamiento, lo que obliga a verter agua sin laminación adicional, lo que podría generar inundaciones aguas abajo.
  • Impactos ambientales: Las presas alteran el flujo natural de los ríos y afectan a los ecosistemas acuáticos y terrestres. Además, pueden bloquear la migración de especies acuáticas y modificar la calidad del agua debido a la sedimentación en el embalse.
  • Costo económico y social: La construcción y el mantenimiento de una presa suponen una inversión elevada, que debe justificarse con los beneficios obtenidos en términos de mitigación de riesgos y otros usos complementarios, como la generación de energía o el abastecimiento de agua.
  • Gestión y coordinación de zonas aguas abajo: Las zonas cercanas a la presa deben contar con planes de emergencia, así como con sistemas de alerta temprana y zonificación adecuada para evitar asentamientos en áreas de riesgo.

Para maximizar los beneficios de las presas, es fundamental complementarlas con otras medidas de gestión de inundaciones, tanto estructurales (como diques y canales) como no estructurales (zonificación de uso del suelo, creación de zonas de almacenamiento controladas y sistemas de alerta temprana).

La gestión integrada de inundaciones y el papel complementario de las presas

La Gestión Integrada de Inundaciones considera tanto medidas estructurales como no estructurales para ofrecer una respuesta holística al riesgo de inundación. Dentro de este enfoque, las presas juegan un papel esencial, pero necesitan ser complementadas por:

  • Zonificación de áreas de riesgo: Al restringir los asentamientos en zonas propensas a inundaciones y promover el uso agrícola o recreativo en estas áreas, se reduce la exposición de las personas y propiedades al riesgo.
  • Planes de emergencia y sistemas de alerta temprana: Las presas pueden incluir sistemas de monitoreo que, junto con datos climáticos, permiten anticipar crecidas y alertar a la población.
  • Medidas de conservación del suelo y reforestación: La conservación del suelo y la vegetación en las cuencas contribuyen a disminuir la escorrentía superficial, reduciendo así la cantidad de agua que llega al embalse en eventos de lluvias intensas.

Conclusión

Las presas constituyen una solución efectiva y probada para mitigar los riesgos de inundación, ya que permiten controlar los caudales en momentos críticos y reducir así el impacto sobre las áreas vulnerables. La laminación de avenidas y la capacidad de almacenamiento controlado son fundamentales para la protección de las comunidades y los ecosistemas. Sin embargo, para una gestión del riesgo completa y sostenible, es necesario considerar un enfoque integral que combine el uso de presas con otras estrategias de gestión, a fin de proteger la vida humana, el bienestar social y la preservación del entorno natural.

Las presas no deben verse como infraestructuras aisladas, sino como elementos clave de un sistema coordinado de gestión de cuencas y respuesta a emergencias, de manera que se maximicen sus beneficios y se minimicen los posibles impactos adversos. Este enfoque integral permite hacer frente a los crecientes desafíos que plantean las inundaciones en un contexto de cambio climático y urbanización acelerada, y construir resiliencia y promover la seguridad a largo plazo para las generaciones futuras.

Referencia:

BERGA, L. (2006). El papel de las presas en la mitigación de las inundaciones. Ingeniería Civil, 144: 7-13.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Transporte de hormigón mediante blondín

Figura 1. Uso del blondín en la presa Ibiur, Baliarrain, España. http://www.ulmaconstruction.es

Los blondines son instalaciones fijas que se utilizan en la construcción de presas y, en ocasiones, de puentes. Se extienden a lo largo de la cerrada y conectan una ladera con otra, con un alcance de hasta 1500 m. La velocidad de desplazamiento del carretón oscila entre 5 y 10 m/s, mientras que la elevación del cazo se realiza a una velocidad de entre 3 y 5 m/s. Para mover el carretón se emplea un cabrestante y, para elevar y descender el gancho, se utiliza otro. En presas de 100 m de altura, ubicadas en valles en forma de «V», se pueden lograr entre 12 y 20 ciclos por hora.

El cubilote o cazo para el hormigón se suspende de un carro que se desplaza a lo largo de un cable. Estas estructuras se ubican por encima de la cota máxima de la presa y pueden transportar cazos con capacidades de entre 3 y 9 m³ de hormigón. Cuando un solo blondín no es suficiente para cubrir todas las áreas o alcanzar las tasas de producción requeridas, se emplean varios, algunos de los cuales pueden ser fijos, es decir, con ambas torres en posiciones permanentes. En las zonas donde el blondín no tiene alcance, se pueden utilizar grúas como complemento. El control de los blondines se realiza mediante radio o circuito cerrado de televisión, nunca por control visual directo ni señales acústicas. El tipo de hormigón que suelen transportar es hormigón compactado con rodillo (HCR).

El blondín recoge el hormigón directamente de la planta o desde la descarga de camiones o silobuses, lo eleva y lo transporta hasta la vertical del bloque en proceso de hormigonado. Una vez en posición, desciende y descarga el hormigón a través de una apertura hidráulica en su parte inferior. En un artículo anterior se describió el funcionamiento del cable-grúa o blondín.

Figura 2. Estructura de blondín. Movimiento traslacional de la cuba

Es importante seguir las siguientes recomendaciones para operar el blondín de forma segura y eficiente: no llenar el cubilote en exceso para evitar derrames por balanceo; ajustar la carga al peso máximo que el blondín puede transportar; evitar mover cargas sobre los trabajadores; coordinar adecuadamente las operaciones de carga, transporte y descarga; ejecutar la descarga del cubilote con precisión; controlar el balanceo del cubilote con cuerdas de control. También se debe revisar el estado de los cables y poleas antes de iniciar el trabajo cada día, así como realizar un buen mantenimiento de los equipos. Al accionar la palanca de descarga, el cubilote subirá bruscamente debido a la pérdida de peso, por lo que se debe tener en cuenta que esto puede afectar a los raíles que sostienen los cables del blondín.

Os dejo un vídeo de cómo se utiliza el blondín en el transporte y colocación del hormigón.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fabricación, puesta en obra y consolidación de hormigones compactados con rodillo

Figura 1. Presa ejecutada con RCC. https://vietnamconstruction.vn/en/roller-compacted-concrete-properties-advantages-applications/

Los hormigones compactados con rodillo (HCR) (RCC, en sus siglas en inglés) son mezclas de cemento, áridos y agua en la cantidad justa para permitir la consolidación de la masa mediante rodillos compactadores.

Estos hormigones tienen una relación agua/cemento suficientemente baja para alcanzar altas resistencias, lo que les permite soportar las cargas de los equipos de consolidación. Sin embargo, esta relación no es tan baja como para impedir que la pasta se distribuya entre los áridos durante el proceso de amasado y compactación, logrando así su unión.

Esto garantizaría una consolidación efectiva, lo cual es crucial para lograr una densidad, resistencia (la resistencia a la compresión puede superar los 60 MPa), uniformidad y textura superficial satisfactorias. El hormigón seco compactado se construye sin juntas, encofrados, acabados, refuerzos de acero ni pasadores. Estas características hacen que el hormigón seco compactado sea sencillo, rápido y económico. Su economía se debe en gran medida a los métodos de construcción de alta velocidad y gran volumen.

Uno de los inconvenientes del HCR es su sensibilidad a las variaciones en la humedad durante el proceso de compactación. Un exceso o un defecto de agua, así como una densidad insuficiente, puede reducir considerablemente la resistencia mecánica y afectar negativamente a la uniformidad de la superficie. Por otro lado, una falta de humedad puede provocar riesgos de segregación en la superficie del hormigón. Sin embargo, el HCR presenta un cambio de volumen potencial debido a la pérdida de humedad o retracción por secado significativamente menor en comparación con el hormigón convencional, gracias a su menor contenido de agua en la mezcla.

El HCR surgió como una alternativa para la construcción de presas, con sus primeros antecedentes en la reparación de estructuras a finales de la década de 1970. Esta técnica respondió a los problemas de fisuración del hormigón tradicional causados por las elevadas temperaturas generadas durante la hidratación del cemento. Posteriormente, el método se perfeccionó para su aplicación en presas de gravedad, siendo la primera experiencia concreta la construcción de la presa de Willow Creek en 1982, en Oregón (Estados Unidos). Desde entonces, su uso se ha expandido rápidamente a nivel mundial. El HCR también se desarrolló como una solución económica para pavimentos, capaz de soportar grandes volúmenes de cargas pesadas y de resistir el daño provocado por ciclos de congelación y descongelación. El pavimento compactado con rodillo tiene la ventaja de que se puede abrir al tráfico al día siguiente y tiene un aspecto parecido al asfalto.

Lo que distingue a los HCR de los hormigones tradicionales es su mayor sequedad, lo que permite su colocación en obra con los equipos utilizados en la construcción de terraplenes y presas de materiales sueltos (Figura 2). A pesar de esta diferencia, una vez endurecidos, sus características son muy similares a las de los hormigones convencionales.

Figura 2. Colocación del hormigón HCR. https://hormigonaldia.ich.cl/novedades-tecnologicas/hormigon-compactado-con-rodillo-hcr-solucion-rapida-persistente-y-a-bajo-costo/

En los últimos tiempos, este tipo de hormigones ha despertado un creciente interés en obras en las que se realiza la colocación en capas delgadas, como en presas y pavimentos, en los que la superficie predomina sobre el espesor. Su estructura es similar a la de las gravas-cemento, aunque, debido a su mayor contenido de conglomerante y a las mayores resistencias que alcanzan, se asemejan más a los hormigones convencionales.

Las mezclas de estos hormigones deben tener una dosificación precisa de pasta, ya que un exceso puede causar un efecto «colchón», generando ondas en la capa que se está compactando frente al rodillo, especialmente si debajo ya hay capas compactadas. Por el contrario, una cantidad insuficiente de pasta provoca que los áridos se contacten entre sí y se trituren bajo la presión del rodillo.

Actualmente, se está avanzando en el desarrollo de plantas de dosificación y amasado específicamente diseñadas para la fabricación de hormigón seco compactado (HCR). Estas plantas utilizan tanto centrales clásicas discontinuas como sistemas de amasado continuo. La dosificación del HCR puede realizarse de varias maneras: mediante dosificación convencional por peso, dosificación continua por peso con cintas pesadoras o dosificación volumétrica continua, utilizando alimentadores de paletas o de banda estriada.

Si bien cada método de transporte tiene sus ventajas, cualquiera que sea el método utilizado, los equipos deben diseñarse para minimizar la segregación, que puede ser un problema, particularmente con mezclas menos trabajables con árido de tamaño máximo grande. Los camiones hormigonera son adecuados incluso para áridos de hasta 76 mm de tamaño máximo. Sin embargo, los camiones de cajón basculante no son recomendables para áridos mayores de 40 mm, ya que pueden surgir problemas de segregación.

En la construcción de presas, es esencial garantizar un suministro elevado de hormigón. Un rodillo vibrante de 4,5 m de ancho puede compactar hasta 260 m³ de hormigón en cuatro pasadas, a una velocidad de 3,75 km/h, con un espesor de 25 cm. Esto requiere el uso de centrales de gran capacidad y, en muchos casos, de amasado continuo para mantener el ritmo de trabajo.

Cuando las plantas de amasado están cerca de los lugares de colocación, se pueden utilizar cintas transportadoras, vagonetas, dúmperes, cubas y otros medios. En todo momento, el hormigón debe protegerse del viento y de la lluvia durante el transporte. Además, se recomienda limpiar los neumáticos de los dúmperes para evitar la entrada de terrones de arcilla y otros materiales contaminantes.

Entre la fabricación y la colocación del hormigón no debe transcurrir más de 45 minutos. Este tiempo puede variar en función del tipo de conglomerante utilizado y de la temperatura ambiente. La colocación de estos hormigones se realiza con los mismos equipos que en los movimientos de tierra, como buldóceres, camiones, motoniveladoras y palas mecánicas.

La compactación se lleva a cabo con rodillos autopropulsados, generalmente vibrantes. La selección de los rodillos debe basarse en su peso, maniobrabilidad, tamaño del cilindro y características de la vibración, como su amplitud y frecuencia. Los rodillos muy pesados, de 4 a 5 toneladas, no pueden acercarse a los encofrados ni a otros obstáculos; por lo tanto, los 25 cm más cercanos a estos se compactan con rodillos más ligeros.

El número de pasadas necesario para lograr una consolidación completa del hormigón varía en función de las características de la mezcla y el espesor de las capas que se van a compactar. El espesor habitual para la compactación es de 20 a 30 cm. Sin embargo, siempre es necesario realizar ensayos previos en tramos de prueba para determinar el número de pasadas necesario para alcanzar el peso específico deseado del hormigón.

La energía suministrada por los rodillos es tan alta que, incluso con mezclas secas bien dosificadas, puede aparecer humedad en la superficie de las capas después del paso de estos rodillos. Esta humedad tiende a evaporarse rápidamente antes de que comience el fraguado. El grado de compactación en obra se determina comparando el peso específico del hormigón colocado con el de la misma mezcla en el laboratorio. Los equipos portátiles para medir el peso específico son rápidos y muy adecuados para este tipo de trabajos.

La reducida humedad del hormigón compactado obliga a curarlo de forma eficaz. El curado de estos hormigones se realiza de la misma manera que con los hormigones tradicionales, manteniéndolos húmedos durante 7 días. Los productos filmógenos de curado no se utilizan en presas porque dificultarían la unión entre las capas de hormigón.

El revestimiento aguas arriba de las presas generalmente se realiza con hormigón convencional, utilizando encofrados o paneles prefabricados, con o sin membrana impermeabilizante. El revestimiento aguas abajo se lleva a cabo con paneles rigidizadores o con hormigón convencional colocado en encofrado, dejando un sobreancho que sirve como hormigón de sacrificio.

A continuación, os dejo algunos vídeos que espero que os resulten de interés.

También os dejo un documento sobre presas de hormigón compactado con rodillo.

Descargar (PDF, 6.73MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Grandes vertidos de hormigón

Figura 1. Vertido de 16 200 m³ de hormigón en la losa de cimentación del rascacielos Wilshire Grand Center. https://ycivilengineering.blogspot.com/2014/02/record-mundial-en-vertido-continuo-de.html

Se considera un gran vertido la colocación de más de 200 m³ de hormigón en un mismo elemento. Es el caso del hormigonado en presas o en grandes losas de cimentación, entre otros. Por ejemplo, en la losa de cimentación del rascacielos Wilshire Grand Center (Los Ángeles, Estados Unidos), se vertieron 16 200 m³ de hormigón en un lapso de 18 horas y media, empleando 208 camiones que realizaron más de 2100 viajes. Se llenó un enorme hueco de 5,5 m de profundidad que está revestido con 3180 toneladas de armaduras de acero.

Los principales problemas asociados a los grandes vertidos son la liberación de una gran cantidad de calor de hidratación y la consiguiente contracción del hormigón al enfriarse, lo que puede causar fisuras. En estructuras de gran envergadura, como las presas, los espesores son tan significativos que la pérdida de calor de la masa a través de su superficie es extremadamente lenta, a menudo tardando varios meses. Este prolongado período de elevación de la temperatura provocan fisuras considerables debido a la retracción térmica. A continuación, se presentan algunas recomendaciones para mitigar los efectos de la colocación de grandes masas de hormigón.

Las medidas a adoptar para este tipo de hormigonado empiezan en el proceso de dosificación, en el que se deben utilizar cementos de bajo calor de hidratación (inferiores a 65 cal/g a los cinco días de edad), sustituir parte del cemento por cenizas volantes o escorias de alto horno y enfriar los componentes. En cuanto al procedimiento de construcción, se recomienda evitar diferencias de temperatura superiores a 20 °C entre dos puntos cualesquiera, evitar restricciones externas y hormigonar de forma continua.

El cemento de bajo calor de hidratación, a veces llamado «cemento frío», resulta especialmente útil en la producción de grandes volúmenes de hormigón concentrado, dado que reduce significativamente el calor liberado durante la reacción de hidratación, evitando así la formación de fisuras térmicas debido al rápido secado que puede provocar el intenso desprendimiento de calor. Por otro lado, debido a esta misma razón, son altamente susceptibles a las bajas temperaturas, las cuales retrasan significativamente su proceso de endurecimiento. Por lo tanto, no se recomienda su uso cuando la temperatura desciende por debajo de +5 °C. En general, se debe minimizar la cantidad de cemento utilizada. Un exceso de cemento conlleva la necesidad de incrementar la cantidad de agua, lo que puede provocar problemas de fisuración y pérdida de resistencia. Es esencial recordar que los mejores hormigones son aquellos que proporcionan las características de resistencia y durabilidad deseadas con el menor consumo posible de cemento. Un exceso de cemento, especialmente si es rico en silicato tricálcico, genera una considerable liberación de calor. Esto puede provocar tensiones térmicas diferenciales que superen la resistencia a la tracción del hormigón, sobre todo en las etapas tempranas de fraguado.

Además de reducir la cantidad de cemento y, por tanto, el calor de fraguado (y, en consecuencia, el riesgo de fisuración), la inclusión de puzolanas y cenizas conlleva otros beneficios significativos. Estos materiales no solo mejoran la trabajabilidad de la mezcla fresca, lo que se traduce en una reducción del contenido de agua necesario para el amasado (entre un 5 % y un 8 %), sino que también aumentan la resistencia y promueven una mayor durabilidad del hormigón.

El control de la temperatura se realiza mediante termopares colocados a 25 mm de la superficie exterior del hormigón y en el centro del elemento. Si la diferencia de temperaturas supera los 20 °C, se debe elevar la temperatura de la zona más fría utilizando una capa de arena, láminas de polietileno, cartón aislante, mantas aislantes, lonas, etc., aplicadas durante varios días. Para reducir la temperatura máxima alcanzada, se recomienda utilizar cementos de bajo calor de hidratación y reemplazar parte del cemento por aditivos. Estas medidas son efectivas para elementos de hasta 2,5 m de espesor.

En elementos más gruesos, el hormigón permanece en condiciones adiabáticas durante muchos días, lo que acelera la hidratación del cemento debido al aumento de la temperatura. Aproximadamente, la temperatura máxima aumenta en 12 °C por cada 100 kg de cemento Portland por m³ de hormigón. En estos casos, el uso de retardadores puede retrasar el aumento de temperatura, pero no reducirlo.

Las restricciones al enfriamiento pueden surgir cuando el hormigón se coloca sobre una base ya endurecida o cuando la secuencia de vertido deja una masa significativa atrapada entre dos áreas de hormigón endurecido con armadura intermedia. En situaciones donde no se puede evitar esta restricción a la contracción o dilatación térmica, es fundamental colocar suficiente armadura de distribución para controlar la formación de fisuras.

Además, se recomienda verter el hormigón de manera continua. Esto requiere un suministro adecuado de hormigón en las proximidades y una planificación cuidadosa. La realización de vertidos en pequeñas cantidades puede ser poco recomendable debido a la creación de numerosas juntas de hormigonado.

Os dejo algunos vídeos ilustrativos. Espero que os interesen.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrados trepantes para presas

Figura 1. Ejecución de muros de presa con inclinación variable. https://www.ulmaconstruction.com/es/encofrados/encofrados-trepantes/sbd-170-consola-de-trepado-para-presas

En el ámbito de construcciones como presas, galerías, esclusas, diques o edificaciones que enfrentan considerables cargas procedentes del hormigonado, se emplean encofrados trepantes específicos configurados a medida para adaptarse a cambios de inclinación vertical hacia adelante y hacia atrás según el proyecto. Este encofrado es un sistema trepante de una sola cara, en el cual las fuerzas generadas durante el hormigonado se descargan sin la necesidad de anclajes tradicionales. En su lugar, se utilizan consolas equipadas con correas y tornapuntas de alta capacidad, transmitiendo las fuerzas hacia el anclaje mediante la consola. Se pueden ejecutar muros con grandes desplomes, con las plataformas de trabajo siempre horizontales.

Estos encofrados son robustos y rentables, eliminando la necesidad de costosos trabajos de terminación al prescindir de anclajes de encofrado que requieran sellado individual. Además, el sistema se desplaza sobre el carro sin necesidad de grúa, facilitando el ferrallado, el montaje de consolas y encofrados, así como el desencofrado de vanos mediante el basculamiento del encofrado.

En el mercado existen soluciones estándar para alturas de bloques de hasta 5 m. Estas soluciones incorporan plataformas de trabajo amplias, con anchuras de hasta 2,80, m y garantizan subidas y bajadas seguras entre las plataformas gracias a un sistema de acceso integrado.

Figura 2. Consola de trepado para presas. https://www.ulmaconstruction.com/es/encofrados/encofrados-trepantes/sbd-170-consola-de-trepado-para-presas

Las principales ventajas de los sistemas trepantes para presas incluyen la obtención de una solución robusta y rentable para cargas pesadas. Las distancias entre consolas permiten trabajar con módulos de encofrado de gran tamaño, optimizando la capacidad de carga y logrando soluciones económicas.

Además, se emplean anclajes diseñados específicamente para este tipo de consolas. Los conos de trepado descargan esfuerzos de tracción y transversales en el hormigón, con conos de protección anticorrosiva que se recuperan y reutilizan, dejando únicamente la barra y la contraplaca de forma permanente en el hormigón.

La flexibilidad en la planificación es otra ventaja, pues este sistema permite hormigonar superficies inclinadas hacia adelante o atrás, incluso en construcciones circulares. La capacidad de montar lateralmente consolas adicionales facilita el encofrado de superficies inclinadas, permitiendo la inclinación que indique el fabricante en su manual de producto y posibilitando la instalación de accesos prácticamente horizontales.

Os dejo un vídeo de ULMA sobre la utilización de estos encofrados en presas.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Cálculo de la temperatura de fabricación del hormigón

Presa Ibiur, Baliarrain, España. http://www.ulmaconstruction.es

El hormigón colocado aumenta su temperatura como consecuencia del calor de hidratación del cemento. Como ese calor se disipa en el hormigón ya endurecido, pueden producirse tensiones que originen fisuras. Este fenómeno es de gran importancia cuando se vierten grandes cantidades de hormigón, como puede ser el caso de la construcción de presas. Para evitar el riesgo de fisuración, además de disponer juntas transversales y longitudinales, también se suelen tomar las siguientes medidas: disposiciones de proyecto para evitar la iniciación de grietas, precauciones para conseguir que la temperatura del hormigón colocado sea la menor posible y procedimientos para acelerar la evacuación del calor de hidratación. En esta entrada nos centraremos en conseguir que la temperatura del hormigón colocado sea la adecuada.

El incremento de temperatura existente entre la fabricación y la puesta en obra se puede calcular aproximadamente con la siguiente expresión:

Por tanto, para conseguir la temperatura de fabricación adecuada, es necesario modificar la temperatura de cada uno de los componentes necesarios para fabricar el hormigón. Si bien se puede enfriar el agua de amasado, lo más efectivo es enfriar los áridos, puesto que cambiar la temperatura del cemento puede ser problemático. Además, los silos de almacenamiento deben estar aislados para controlar mejor la temperatura de fabricación.

Las leyes de equilibrio térmico permiten obtener la temperatura final de la mezcla, tanto si se utiliza agua de amasado con hielo como sin hielo. Además, se recomienda probar diferentes soluciones para ver qué combinación es más sencilla de aplicar en cada caso. La expresión es la siguiente:

En esta expresión, observamos que el agua total de amasado incluye el agua libre de los áridos. Sin embargo, el agua total es la suma del agua de amasado y del hielo que se incorpore a la mezcla.

Referencias:

COMITÉ NACIONAL ESPAÑOL DE GRANDES PRESAS (1999). Construcción de presas y control de calidad. Guías Técnicas de Seguridad de Presas. Colegio de Ingenieros de Caminos, Canales y Puertos, 333 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

La aplicación de la toma de decisiones multicriterio a la gestión de presas

Presa de Aldeadávila. Wikipedia

La gestión del mantenimiento de las presas existentes constituye un proceso complejo que requiere la aplicación de la toma de decisiones atendiendo a  múltiples criterios para evitar las severas consecuencias sociales, económicas y medioambientales que pueden acarrear. A continuación os dejo un artículo científico que nos acaban de publicar al respecto. Realiza una revisión profunda del estado del arte en la materia. Espero que os sea de interés.

El artículo completo lo podéis encontrar aquí:  http://www.sciencedirect.com/science/article/pii/S0959652617301051

 

Abstract:

Decisions for aging-dam management requires a transparent process to prevent the dam failure, thus to avoid severe consequences in socio-economic and environmental terms. Multiple criteria analysis arose to model complex problems like this. This paper reviews specific problems, applications and Multi-Criteria Decision Making techniques for dam management. Multi-Attribute Decision Making techniques had a major presence under the single approach, specially the Analytic Hierarchy Process, and its combination with Technique for Order of Preference by Similarity to Ideal Solution was prominent under the hybrid approach; while a high variety of complementary techniques was identified. A growing hybridization and fuzzification are the two most relevant trends observed. The integration of stakeholders within the decision making process and the inclusion of trade-offs and interactions between components within the evaluation model must receive a deeper exploration. Despite the progressive consolidation of Multi-Criteria Decision Making in dam management, further research is required to differentiate between rational and intuitive decision processes. Additionally, the need to address benefits, opportunities, costs and risks related to repair, upgrading or removal measures in aging dams suggests the Analytic Network Process, not yet explored under this approach, as an interesting path worth investigating.

Keywords:

  • Ageing dams;
  • Dam management;
  • Decision making;
  • Multiple criteria analysis;
  • Risk

Referencia:

ZAMARRÓN-MIEZA, I.; YEPES, V.; MORENO-JIMÉNEZ, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230. http://www.sciencedirect.com/science/article/pii/S0959652617301051

Descargar (PDF, 851KB)