Técnicas de decisión multicriterio para la educación de ingenieros en sostenibilidad

ABSTRACT

In recent times, a great deal of interest has emerged from different sectors of society towards sustainability and sustainable product design. Decision makers are increasingly encouraged to take into consideration the economic, environmental and social dimensions of reality when dealing with problems. Sustainability is of particular importance in the field of civil engineering, where structures are designed that are long lasting and shall cause significant impacts over a long period of time, such as bridges or dams. Consequently, when addressing a structural design, civil engineers shall account for the three dimensions of sustainability, which usually show conflicting perspectives. Multi-criteria methods allow the inclusion of non-monetary aspects into the design process of infrastructure. In the postgraduate course ‘Predictive and optimisation models for concrete structures’, offered at the Masters in Concrete Engineering of the Universitat Politècnica de València, civil engineering students are taught how to apply such tools within the framework of sustainable design of concrete structures. The present paper conducts a state-of-the-art review of the main multi-criteria decision making methodologies taught in the course in the context of sustainability. Articles are searched in recognized databases, such as SCOPUS and Web of Science. The most significant methods, such as Analytical Hierarchy Process (AHP), Elimination and Choice Expressing Reality (ELECTRE), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) or Complex Proportional Assessment (COPRAS) are systematically discussed, identifying the actual trends concerning the use of such methodologies in the field of civil engineering. The review provides a deep insight in the multi criteria techniques that are most frequently used when assessing sustainability of infrastructure designs.

KEYWORDS

Postgraduate education; multi-criteria decision making; sustainability; structural design; state of the art review

REFERENCE

NAVARRO, I.; MARTÍ, J.V.; YEPES, V. (2018). Multi-criteria decision making techniques in civil engineering education for sustainability. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9798-9807.  ISBN: 978-84-09-05948-5

Descargar (PDF, 207KB)

Las heurísticas en la educación en ingeniería. Aplicación a los sistemas de gestión sostenible de puentes

ABSTRACT

This paper deals with the postgraduate course ‘Predictive and optimisation models for concrete structures’, offered at the Masters in Concrete Engineering of the Universitat Politècnica de València. Within this course, engineering students are introduced into different optimization algorithms, such as simulated annealing, neural networks, genetic algorithms, etc. of application in the automated design of concrete structures of any type. In recent times, such heuristic methods have turned out to be of great interest in the resolution of complex and actual engineering problems, such as the sustainable design and management of structures. This communication presents a case study where the ongoing research of the teaching body is applied so as to find the most sustainable management strategy for a particular bridge system consisting of 7 bridges whose lengths vary between 380 m and 1980 m. The optimization problem here aims to minimize both the economic and environmental life cycle impacts derived from the maintenance of the concrete decks of a bridge network by selecting the adequate maintenance intervals for every deck considering annual budgetary restrictions. A multi-objective simulated annealing algorithm is applied to find the set of Pareto optimal solutions for the presented engineering problem. The environmentally preferable maintenance strategy results in life cycle costs 4.9% greater than those related to the cost-optimal strategy, which in turn results in environmental impacts 5.6% greater than those from the environmentally optimized management option. Results are then compared to the optimal strategies considering a single bridge deck, showing that the optimality at the bridge level does not necessarily lead to a sustainable optimum at the network level. From this it follows that, when optimizing maintenance under budgetary restrictions, the network shall be analysed as a whole, and not as an aggregation of optimal strategies for each individual bridge. The case study presented here shows in a nutshell the close connection between the course curricula of the MSc course and the ongoing research of the teaching and research group.

KEYWORDS

Postgraduate education; applied research; heuristic algorithms; sustainable thinking; bridge management system

REFERENCE

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Heuristics in engineering education. A case study application to sustainable bridge management systems. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9788-9797.  ISBN: 978-84-09-05948-5

Descargar (PDF, 663KB)