La optimización multiobjetivo y la toma de decisiones multicriterio en ingeniería estructural

By retocada por Yeza de la versión original de Alonsoquijano [Public domain], from Wikimedia Commons

Actualmente existe una tendencia clara hacia la evaluación de los impactos en todas las etapas del ciclo de vida de un producto. Esta tendencia ha llegado a los proyectos de estructuras, donde la evaluación de las repercusiones sociales, ambientales y económicas de las distintas alternativas no deriva en una decisión clara y unívoca de la mejor solución, sobre todo cuando los objetivos que se pretenden se encuentran enfrentados entre sí (Jato-Espino et al., 2014; Penadés-Plà et al., 2016; Zamarrón-Mieza et al., 2017; Sierra et al., 2018). El problema de seleccionar la mejor opción en el ámbito del proyecto de puentes ha supuesto una línea de investigación que se ha desarrollado enormemente en las últimas décadas. Balali et al. (2014) expusieron que los problemas relacionados con la toma de decisiones a lo largo del ciclo de vida de un puente se pueden enmarcar dentro de las siguientes fases: (a) proyecto, (b) construcción, y (c) uso y mantenimiento. Estas fases son las que se consideran habitualmente por otros autores (Malekly et al, 2010), que además añaden una última fase en el ciclo de vida de un puente: (d) reciclado o demolición.

Así pues, el proyecto de puentes se caracteriza por la presencia de múltiples objetivos de diseño -muchos contradictorios entre sí-, y la selección de la mejor opción entre distintas alternativas. La calidad, la constructibilidad, la seguridad, el impacto ambiental y el coste son los aspectos que normalmente se consideran en el diseño y la planificación de las operaciones de mantenimiento de un puente. La optimización multiobjetivo (Multi-Objective Optimization, MOO) resulta una herramienta útil cuando varios objetivos desean optimizarse simultáneamente. MOO proporciona un conjunto de soluciones eficaces, constituyendo la denominada frontera de Pareto. Las soluciones que forman parte de la frontera de Pareto no pueden mejorarse sin que empeore cualquier otra solución de dicho conjunto. Koumousis y Arsenis (1998) utilizaron MOO para el diseño de estructuras de hormigón. Liao et al (2011) revisaron los estudios que utilizaron metaheurísticas para problemas relacionados con el ciclo de vida de un proyecto de construcción. Por su parte, Zavala et al. (2013) estudiaron las metaheurísticas utilizadas en la optimización multiobjetivo de las estructuras.

Se pueden reseñar varios estudios que han utilizado la optimización multiobjetivo para comparar el diseño de estructuras de hormigón armado (Reinforced Concrete, RC) atendiendo a la reducción de las emisiones de gases de efecto invernadero y la reducción de costes (Martínez-Martín et al., 2012; García-Segura et al., 2014, 2016; Yepes et al, 2015). Payá et al. (2008) optimizaron pórticos de edificación de RC utilizando como función objetivo la constructibilidad, los costes económicos, el impacto ambiental y la seguridad general de la estructura. Martínez-Martín et al. (2012) optimizaron las pilas RC de un puente considerando como funciones objetivo el coste económico, la congestión de las armaduras pasivas y las emisiones de CO2. Yepes et al. (2015) incorporaron como función objetivo la vida útil en el diseño de una viga de sección en I confeccionada con hormigón de alta resistencia. García-Segura et al. (2014) incluyeron, además, un factor que evalúa la seguridad global en esa misma estructura.

A pesar de que los diseños deben garantizar cierta durabilidad, esta función objetivo suele utilizarse más en el ámbito de la gestión del mantenimiento de infraestructuras ya existentes. Así, Liu y Frangopol (2005) emplearon la optimización multiobjetivo en puentes deteriorados atendiendo a su estado, a los niveles de seguridad y al coste de mantenimiento de la estructura a lo largo del ciclo de vida. Sabatino et al. (2015) optimizaron las operaciones de mantenimiento de la estructura a lo largo de su ciclo de vida bajo los objetivos simultáneos de reducción del coste de mantenimiento y la utilidad mínima anual asociada con un indicador relacionado con la sostenibilidad. Torres-Machi et al. (2015) optimizaron la gestión sostenible de un pavimento considerando simultáneamente aspectos económicos, técnicos y ambientales.

Otro aspecto de interés en el ámbito de la investigación son los procedimientos que permiten seleccionar una solución de un conjunto de opciones posibles atendiendo a múltiples criterios. Las técnicas de toma de decisiones proporcionan un procedimiento racional a las decisiones basadas en cierta información, experiencia y juicio. Estas técnicas pueden clasificarse de acuerdo con la forma en la que el decisor articula sus preferencias. En un proceso “a priori”, los expertos asignan los pesos de cada criterio en la etapa inicial. El proceso “a posteriori” no requiere una definición previa de las preferencias. Por ejemplo, la optimización multiobjetivo genera una gama de soluciones óptimas, que se consideran igualmente buenas –frontera de Pareto-. En este caso, la toma de decisiones tiene lugar “a posteriori”. Este enfoque permite el análisis de las mejores soluciones según cada objetivo, lo cual proporciona información sobre la relación entre los objetivos y las soluciones. Jato-Espino et al. (2014) presentaron una revisión del desarrollo de los métodos de decisión multicriterio aplicados a la construcción. Existen numerosas técnicas de toma de decisiones multicriterio. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), VIKOR (Multi-criteria Optimization and Compromise Solution), MAUT (Multi-Attribute Utility Theory), AHP (Analytical Hierarchy Process), ANP (Analytical Network Process), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations), DEA (Data Envelopment Analysis), COPRAS (Complex Proportional Assessment) o QFD (Quality Function Deployment), son, entre otras, las más extensamente utilizadas.

Abu Dabous y Alkass (2010) presentaron una estructura jerárquica para la toma de decisiones en la gestión de puentes basados en MAUT y AHP. Sabatino et al. (2015) recurrieron a la teoría de utilidad de múltiples atributos para evaluar diversos aspectos de la sostenibilidad estructural considerando los riesgos asociados a los fallos en el puente y las actitudes frente al riesgo de los decisores. Ardeshir et al. (2014) emplearon un AHP difuso para seleccionar la ubicación para la construcción de un puente. Aghdaie et al. (2012) emplearon AHP y COPRAS para calcular la importancia relativa de los criterios y clasificar las alternativas en la selección de ubicaciones para construir nuevas pasarelas. Balali et al. (2014) seleccionaron el material, el procedimiento constructivo y la tipología estructural de un puente mediante la técnica PROMETHEE. Tanto VIKOR (Opricovic, 1998) como TOPSIS (Hwang y Yoon, 1981) son métodos que seleccionan soluciones basadas en la distancia más corta a la solución ideal. Opricovic y Tzeng (2004) compararon VIKTOR y TOPSIS y mostraron que presentan algunas diferencias en relación con la función de agregación y los efectos de normalización. La técnica difusa (fuzzy) (Zadeh, 1965) es una técnica útil para representar la incertidumbre inherente en la vida real. Joshi et al. (2004) evaluaron un conjunto de criterios para seleccionar la cimentacion más adecuada mediante fuzzy. AHP se combina con fuzzy (Jakiel y Fabianowski, 2015, Wang et al., 2001) para seleccionar entre distintas tipologías de puentes RC y alternativas de plataforma offshore, respectivamente. Abu Dabous y Alkass (2010) indicaron la dificultad en establecer la importancia relativa entre dos elementos con planteamientos deterministas, debido a la incertidumbre inherente al comportamiento de los diferentes elementos.

Se han propuesto muchos métodos para reducir el conjunto de soluciones procedentes de la frontera de Pareto (Hancock y Mattson, 2013). El método de la región de “rodilla” (Rachmawati y Srinivasan, 2009) constituye un método “a posteriori” que distingue los puntos para los cuales una mejora en un objetivo da lugar a un empeoramiento significativo de al menos otro objetivo. Una región de “rodilla” en el frente óptimo de Pareto, visualmente es una protuberancia convexa en la parte delantera, la cual es importante para la toma de decisiones en contextos prácticos, pues a menudo constituye el óptimo en equilibrio. Los métodos de agrupación se centran en ensamblar soluciones en grupos y seleccionar soluciones representativas (Saha y Bandyopadhyay, 2009). Los métodos de filtrado eliminan las soluciones de Pareto que ofrecen poca información al decisor (Mattson et al., 2004). Yepes et al. (2015a) propusieron un procedimiento sistemático “a posteriori” para filtrar la frontera de Pareto, a la vez que proporcionaba conocimiento relevante derivado del proceso de resolución. Esta técnica simplifica la elección de la solución preferente. Para ello se combinan matrices AHP aleatorias con la minimización de la distancia para seleccionar la solución más cercana a la ideal.

Se puede consultar una revisión bibliográfica reciente sobre la aplicación de las herramientas de decisión multicriterio al ciclo de vida de los puentes en el trabajo de Penadés-Plà et al. (2016). En este trabajo se comprueba cómo no existe una métrica universalmente aceptada para medir la diversidad de objetivos de todo tipo que se utilizan en la selección de la mejor opción de proyecto de un puente para un caso determinado. Para ello se analizaron un total de 77 artículos publicados desde 1991. El estudio aplicó un análisis multivariante de correspondencias (ver Figura). De este modo, se recogen los métodos de decisión multicriterio que debe aplicar el ingeniero para la selección de alternativas según la fase del ciclo de vida del puente, así como los criterios que se han considerado en dichos trabajos. La relación más obvia se ha identificado entre la lógica difusa y la fase de uso y mantenimiento. También se observa que el método AHP es ampliamente usado en las tres primeras fases del ciclo de vida de un puente. Finalmente la fase de demolición o reciclado es la menos estudiada, asociándose principalmente al método ANP.

Figura. Análisis de correspondencias entre la toma de decisiones y el ciclo de vida (Penadés-Plà et al., 2016)

Referencias:

Abu Dabous, S.; Alkass, S. (2010). A multi‐attribute ranking method for bridge management. Engineering, Construction and Architectural Management, 17(3), 282–291.

Aghdaie, M.H.; Zolfani, S.H.; Zavadskas, E.K. (2012). Prioritizing constructing projects of municipalities based on AHP and COPRAS-G: A case study about footbridges in Iran. The Baltic Journal of Road and Bridge Engineering, 7(2), 145–153.

Ardeshir, A.; Mohseni, N.; Behzadian, K.; Errington, M. (2014). Selection of a bridge construction site using Fuzzy Analytical Hierarchy Process in Geographic Information System. Arabian Journal for Science and Engineering, 39(6), 4405–4420.

Balali, V.; Mottaghi, A.; Shoghli, O.; Golabchi, M. (2014). Selection of appropriate material, construction technique, and structural system of bridges by use of multicriteria decision-making method. Transportation Research Record: Journal of the Transportation Research Board, 2431, 79–87.

García-Segura, T.; Yepes, V.; Alcalá, J. (2014). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.

García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336.

Hancock, B.J.; Mattson, C. A. (2013). The smart normal constraint method for directly generating a smart Pareto set. Structural and Multidisciplinary Optimization, 48(4), 763–775.

Hwang, C.L.; Yoon, K. (1981). Multiple Attributes Decision Making Methods and Applications. Springer, Berlin Heidelberg.

Jakiel, P.; Fabianowski, D. (2015). FAHP model used for assessment of highway RC bridge structural and technological arrangements. Expert Systems with Applications, 42(8), 4054–4061.

Jato-Espino, D.; Castillo-López, E.; Rodríguez-Hernández, J.; Canteras-Jordana, J.C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction, 45, 151–162.

Joshi, P.K.; Sharma, P.C.; Upadhyay, S.; Sharma, S. (2004). Multi objective fuzzy decision making approach for selection of type of caisson for bridge foundation. Indian Journal Pure Application Mathematics.

Koumousis, V.K., Arsenis, S.J. (1998). Genetic Algorithms in Optimal Detailed Design of Reinforced Concrete Members. Computer-Aided Civil and Infrastructure Engineering, 13(1), 43–52.

Liao, T.W.; Egbelu, P.J.; Sarker, B.R.; Leu, S.S. (2011). Metaheuristics for project and construction management – A state-of-the-art review. Automation in Construction, 20(5), 491–505.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Malekly, H.; Meysam Mousavi, S.; Hashemi, H. (2010). A fuzzy integrated methodology for evaluating conceptual bridge design, Expert Systems with Applications, 37, 4910-4920.

Martínez-Martín, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University: Science A, 13(6), 420–432.

Mattson, C.A.; Mullur, A.A.; Messac, A. (2004). Smart Pareto filter: obtaining a minimal representation of multiobjective design space. Engineering Optimization, 36(6), 721–740.

Opricovic, S. (1998). Multicriteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, Belgrade.

Opricovic, S.; Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.

Payá, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2008). Multiobjective optimization of reinforced concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596–610.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.

Rachmawati, L.; Srinivasan, D. (2009). Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Transactions on Evolutionary Computation, 13(4), 810–824.

Sabatino, S.; Frangopol, D.M.; Dong, Y. (2015). Sustainability-informed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude. Engineering Structures, 102, 310–321.

Saha, S.; Bandyopadhyay, S. (2009). A new multiobjective clustering technique based on the concepts of stability and symmetry. Knowledge and Information Systems, 23(1), 1–27.

Sierra, L.A.; Yepes, V.; Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.

Torres-Machi, C.; Chamorro, A.; Pellicer, E.; Yepes, V.; Videla, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record: Journal of the Transportation Research Board, 2523, 56–63.

Wang, H.L.; Zhang, Z.; Qin, S.F.; Huang, C.L. (2001). Fuzzy optimum model of semi-structural decision for lectotype. China Ocean Engineering, 15(4), 453–466.

Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.

Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.

Zavala, G.R.; Nebro, A.J.; Luna, F.; Coello Coello, C. A. (2013). A survey of multi-objective metaheuristics applied to structural optimization. Structural and Multidisciplinary Optimization, 49(4), 537–558.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)

Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. Continue reading “Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)”

Algunas conclusiones obtenidas del proyecto BRIDLIFE sobre puentes postesados en cajón

A punto de terminar el proyecto de investigación BRIDLIFE, a continuación se exponen algunas conclusiones de interés fruto de dicho proyecto y de la tesis doctoral y publicaciones de la profesora Tatiana García Segura. Son pequeñas “píldoras” de conocimiento que pueden ser de interés para proyectistas e investigadores relacionados con los puentes, el hormigón, la sostenibilidad y la optimización. Son las siguientes:

  1. A pesar de la reducción de durabilidad por carbonatación y la menor captura de CO2, los cementos con adiciones resultan beneficiosos desde el punto de vista ambiental [1].
  2. Mientras el uso del hormigón reciclado como árido afecta a las propiedades del hormigón y requiere en muchos casos un incremento en el contenido de cemento, la reutilización del hormigón como material granular de relleno permite una completa carbonatación del hormigón que reduce las emisiones de CO2 [1].
  3. Se puede mejorar la seguridad estructural de los puentes en cajón con un pequeño incremento de coste siempre que se escojan las variables adecuadas [2]. Este incremento de coste no es constante para todos los niveles de seguridad. Se pueden establecer diferentes puntos, a partir de los cuales resulta más caro mejorar la seguridad estructural [2].
  4. No se aconseja aumentar el espesor de la losa superior para mejorar la seguridad de los puentes en cajón, ya que ello conlleva un aumento de peso innecesario [2]. Sin embargo, el espesor de las alas en el arranque es un aspecto clave para mejorar la flexión transversal [2].
  5. A pesar de que se ha considerado la inclinación del alma como variable de optimización, su valor óptimo apenas difiere para distintos valores de seguridad.  Esto se debe a que tanto el canto como el ancho de inclinación del alma aumentan en paralelo para mejorar la seguridad estructural [2].
  6. El uso de hormigón de alta resistencia en puentes no muestra ventajas económicas a corto plazo, pues las restricciones de servicio y armadura mínima no permiten reducir el canto y la cantidad de armadura [2]. Sin embargo, el hormigón de alta resistencia retrasa el inicio de la corrosión [3] y mejora el rendimiento estructural una vez se ha iniciado la corrosión [4]. Si se diseñan estructuras con hormigones de alta resistencia se consiguen mejores resultados durante el ciclo de vida que con diseños que tienen mayores recubrimientos, a pesar de tener el mismo inicio de corrosión [4].
  7. Los diseños que tienen una mayor durabilidad tienen un mayor coste inicial pero un menor coste de ciclo de vida [4].
  8. Los resultados muestran que tanto la optimización del coste como de las emisiones de CO2 reducen el consumo de material. Por tanto, la optimización del coste es una buena estrategia para conseguir estructuras más ecológicas [2,5,6].
  9. Para gestionar el mantenimiento de las estructuras de forma sostenible se debe tener en cuenta tanto el coste y las emisiones de reparación, como el impacto que produce el desvío de tráfico sobre los usuarios de la vía [4].
  10. La optimización del mantenimiento indica que no se debe optimizar cada superficie por separado, sino que se debe coordinar el mantenimiento de todas las superficies para reducir el coste y las emisiones que ocasiona el desvío del tráfico [4].

Referencias:

[1]          T. García-Segura, V. Yepes, J. Alcalá, Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, Int. J. Life Cycle Assess. 19 (2014) 3–12. doi:10.1007/s11367-013-0614-0.

[2]         T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Eng. Struct. 125 (2016) 325–336. doi:10.1016/j.engstruct.2016.07.012.

[3]         T. García-Segura, V. Yepes, D.M. Frangopol, Multi-objective design of post-tensioned concrete road bridges using artificial neural networks, Struct. Multidiscip. Optim. 56 (2017) 139–150. doi:10.1007/s00158-017-1653-0.

[4]         T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Lifetime reliability-based optimization of post-tensioned box-girder bridges, Eng. Struct. 145 (2017) 381–391. doi:10.1016/j.engstruct.2017.05.013.

[5]         T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Eng. Struct. 92 (2015) 112–122. doi:10.1016/j.engstruct.2015.03.015.

[6]         J.V. Martí, T. García-Segura, V. Yepes, Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, J. Clean. Prod. 120 (2016) 231–240. doi:10.1016/j.jclepro.2016.02.024.

Tesis doctoral: Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria

tatiana_jpg-1024x748Hoy 30 de septiembre de 2016 ha tenido lugar la defensa de la tesis doctoral de Dª Tatiana García Segura denominada “Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria”, dirigida por Víctor Yepes Piqueras. La tesis recibió la calificación de “Sobresaliente Cum Laude” por unanimidad, con mención internacional. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

Los puentes, como parte importante de una infraestructura, se espera que reúnan todos los requisitos de una sociedad moderna. Tradicionalmente, el objetivo principal en el diseño de puentes ha sido lograr el menor coste mientras se garantiza la eficiencia estructural. Sin embargo, la preocupación por construir un futuro más sostenible ha provocado un cambio en las prioridades de la sociedad. Estructuras más ecológicas y duraderas son cada vez más demandadas. Bajo estas premisas, los métodos de optimización heurística proporcionan una alternativa eficaz a los diseños estructurales basados en la experiencia. La aparición de nuevos materiales, diseños estructurales y criterios sostenibles motivan la necesidad de crear una metodología para el diseño automático y preciso de un puente real de hormigón postesado que considere todos estos aspectos. Por primera vez, esta tesis estudia el diseño eficiente de puentes de hormigón postesado con sección en cajón desde un punto de vista sostenible. Esta investigación integra criterios ambientales, de seguridad estructural y durabilidad en el diseño óptimo del puente. La metodología propuesta proporciona múltiples soluciones que apenas encarecen el coste y mejoran la seguridad y durabilidad. Al mismo tiempo, se cuantifica el enfoque sostenible en términos económicos, y se evalúa el efecto que tienen dichos criterios en el valor óptimo de las variables.

2016-09-30-19_21_29En este contexto, se formula una optimización multiobjetivo que proporciona soluciones eficientes y de compromiso entre los criterios económicos, ecológicos y sociales. Un programa de optimización del diseño selecciona la mejor combinación de geometría, tipo de hormigón, armadura y postesado que cumpla con los objetivos seleccionados. Se ha escogido como caso de estudio un puente continuo en cajón de tres vanos situado en la costa. Este método proporciona un mayor conocimiento sobre esta tipología de puentes desde un punto de vista sostenible. Se ha estudiado el ciclo de vida a través de la evaluación del deterioro estructural del puente debido al ataque por cloruros. Se examina el impacto económico, ambiental y social que produce el mantenimiento necesario para extender la vida útil del puente. Por lo tanto, los objetivos propuestos para un diseño eficiente han sido trasladados desde la etapa inicial hasta la consideración del ciclo de vida.

Para solucionar el problema del elevado tiempo de cálculo debido a la optimización multiobjetivo y el análisis por elementos finitos, se han integrado redes neuronales en la metodología propuesta. Las redes neuronales son entrenadas para predecir la respuesta estructural a partir de las variables de diseño, sin la necesidad de analizar el puente. El problema de optimización multiobjetivo se traduce en un conjunto de soluciones de compromiso que representan objetivos contrapuestos. La selección final de las soluciones preferidas se simplifica mediante una técnica de toma de decisiones. Una técnica estructurada convierte los juicios basados en comparaciones por pares de elementos con un grado de incertidumbre en valores numéricos que garantizan la consistencia de dichos juicios. Esta tesis proporciona una guía que extiende y mejora las recomendaciones sobre el diseño de estructuras de hormigón dentro del contexto de desarrollo sostenible. El uso de la metodología propuesta lleva a diseños con menor coste y emisiones del ciclo de vida, comparado con diseños que siguen metodologías generales. Los resultados demuestran que mediante una correcta elección del valor de las variables se puede mejorar la seguridad y durabilidad del puente con un pequeño incremento del coste. Además, esta metodología es aplicable a cualquier tipo de estructura y material.

Una aproximación cognitiva a la optimización multiobjetivo de estructuras de hormigón

BBA027Acaban de publicarnos un artículo muy novedoso sobre la aproximación cognitiva a los problemas de optimización multiobjetivo de las estructuras de hormigón. La revista es Archives of Civil and Mechanical Engineering, que es una revista de alto impacto en el campo de la ingeniería civil, indexada en el JCR en el primer cuartil. El resultado de combinar técnicas de decisión multicriterio junto con la optimización multiobjetivo supone una auténtica revolución en la forma de abordar el diseño de las estructuras. Ya no basta con aplicar la experiencia, la imaginación y las normas para proyectar una estructura. Se hace necesario abordar el problema desde el origen, considerando múltiples perspectivas y buscando soluciones que optimicen a la vez aspectos como los costes, la seguridad, la sostenibilidad, los riesgos laborales, la durabilidad, la estética y tantos otros.

El artículo plantea la metodología básica necesaria para establecer la resolución de este tipo de problemas. Sin embargo se deben potenciar los estudios que permitan valorar los aspectos más subjetivos que intervienen en la decisión de la mejor opción de las posibles. Esta línea de investigación se encuadra dentro del proyecto de investigación BRIDLIFE, del cual soy investigador principal. Además, supone un ejemplo de colaboración con otras universidades, en este caso con la Universidad de Zaragoza.

Referencia:

YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001

Abstract:

This paper proposes a cognitive approach for analyzing and reducing the Pareto optimal set for multi-objective optimization (MOO) of structural problems by means of jointly incorporating subjective and objective aspects. The approach provides improved knowledge on the decision-making process and makes it possible for the actors involved in the resolution process and its integrated systems to learn from the experience. The methodology consists of four steps: (i) the construction of the Pareto set using MOO models; (ii) the filtering of the Pareto set by compromise programming methods; (iii) the selection of the preferred solutions, utilizing the relative importance of criteria and the Analytic Hierarchy Process (AHP); (iv) the extraction of the relevant knowledge derived from the resolution process. A case study on the reinforced concrete (RC) I-beam has been included to illustrate the methodology. The compromise solutions are obtained through the objectives of economic feasibility, structural safety, and environmental sustainability criteria. The approach further identifies the patterns of behavior and critical points of the resolution process which reflect the relevant knowledge derived from the cognitive perspective. Results indicated that the solutions selected increased the number of years of service life. The procedure produced durable and ecological structures without price trade-offs.

Optimización multiobjetivo para el estudio de la sostenibilidad del hormigón

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2014). Optimización multiobjetivo para el estudio de la sostenibilidad del hormigón autocompactante. VI Congreso de ACHE, 3-5 de junio, Madrid. ISBN: 978-84-89670-80-8.

RESUMEN

images (1)El propósito de este artículo es presentar la optimización multiobjetivo como herramienta para el estudio de la sostenibilidad de los hormigones autocompactantes. Se toma como ejemplo una viga en doble T de hormigón de 15 m de luz definida por 20 variables. Una variable recoge ocho posibles dosificaciones del hormigón. Cuatro hormigones convencionales CC y cuatro hormigones autocompactantes SCC representan cuatro clases resistentes. Se utiliza el algoritmo recocido simulado multiobjetivo “Multiobjective Simulated Annealing” (MOSA) para optimizar el coste, las emisiones de CO2 y la durabilidad. Los resultados muestran la viabilidad económica de las reducciones de las emisiones de CO2 y de las mejoras en durabilidad. Además, las soluciones con menor coste y emisión anual utilizan hormigón autocompactante. Los resultados proporcionan al proyectista estructural criterios para elegir soluciones más sostenibles.

PALABRAS CLAVE

Sostenibilidad, autocompactante, optimización, multiobjetivo, viga en doble T.