Mototraílla de doble tracción

Figura 1. Mototraílla de doble motor

En una entrada anterior ya se comentaron aspectos básicos de las mototraíllas (scrapers, en inglés). Son máquinas utilizadas para la excavación, carga, transporte, descarga y nivelación de materiales de consistencia media, tales como tierras, arena, arcilla, rocas disgregadas, zahorras, etc. Consisten en una caja abierta con dispositivo de descenso, corte, ascenso y descarga de tierras. Dicha cuchilla va cortando el terreno, llenándose la caja al avanzar la máquina. En esta ocasión vamos a describir de forma breve la mototraílla de doble tracción.

Las mototraíllas de doble tracción poseen dos motores, uno delantero y otro posterior, y, por tanto, tienen tracción en los dos ejes. Son más potentes que las convencionales, pudiendo trabajar en terrenos más compactos, y con mayores pendientes. Suelen tener una relación capacidad/potencia de 35 l/CV y una relación peso/potencia de 120 kg/CV. Estas máquinas se complementan, en ocasiones, con una segunda mototraílla dispuesta en tándem con la primera, trabajando en pareja y reciben entonces el nombre de mototraíllas de empuje y arrastre (push-pull): presentan en la parte delantera un plato de empuje y un dispositivo de enganche con accionamiento desde la cabina, en la parte posterior dispone de un tope y un gancho fijo. La delantera se llena mediante el empuje de la trasera y cuando está cargada, baja la trasera, el gancho y la caja siendo remolcada por la delantera. Cuando está cargada la trasera, emite una señal acústica, se desengancha y la delantera deja de tirar. Desde este momento las traíllas funcionan de forma independiente hasta que se repite el ciclo de carga. Sus distancias de acarreo óptimas se sitúan entre 150-200 m. y 1.600 m.

Figura 2. Equipo de mototraíllas de empuje y arrastre. https://www.cat.com

Os dejo ahora algunos vídeos relacionados con el trabajo de estas máquinas. Espero que os sean de interés.

En estos vídeos se aclara mejor el trabajo de las mototraíllas de empuje y arrastre.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Coeficiente de esponjamiento en movimiento de tierras

Figura 1. Retroexcavadora

Uno de los problemas habituales, pero fáciles de resolver en el cálculo de costes y producciones de los movimientos de tierras, es no tener en cuenta los cambios de volumen que experimenta el terreno cuando se excava, transporta y compacta. A continuación os voy a contar algunos de estos conceptos. Por cierto, el material de este artículo forma parte del curso que puedes seguir en línea, en el siguiente enlace: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

El “peso específico de un suelo“, como relación entre el peso y su volumen, es un valor dependiente de la humedad, de los huecos de aire y del peso específico de las partículas sólidas. Para evitar confusiones, las determinaciones de los ensayos de laboratorio facilitan, por un lado, el “peso específico seco” y por otro la humedad. Fijémonos que este término es diferente de la “densidad del suelo“, que establece una relación entre la masa y el volumen. Por tanto, en las siguientes definiciones, aunque hablemos de densidad, en propiedad deberíamos hablar de peso específico. Sin embargo, a efectos prácticos no hay problemas en los cálculos (uso de kilogramos-masa frente a kilogramos-fuerza o Newtons en el Sistema Internacional).

La densidad de un terreno, esto es, la masa por unidad de volumen, es una característica dependiente del estado del suelo o de las rocas. Los componentes sólidos del terreno, su ordenación, humedad, grado de compactación, índice de huecos, granulometría, son rasgos que alteran la densidad de un terreno, siendo, por tanto, necesario, referir en cada momento, qué tipo de densidad estamos tratando.

Se denomina densidad aparente a la masa de una porción de terreno por unidad de volumen. Dicha masa estaría constituida por las partículas sólidas más el agua.

Se define densidad en banco o “in situ” dB a la densidad aparente del terreno en su estado natural, antes de su extracción. El movimiento de tierras va a provocar, mediante acciones mecánicas sobre los terrenos, una reordenación de sus elementos integrantes y, por tanto, una variación de dicha densidad aparente, bien sea aumentando el volumen de los mismos (excavación), o bien disminuyéndolos (compactación). Si no existieran incrementos o disminuciones de humedad durante la manipulación del terreno, se mantendría constante el producto del volumen por la densidad aparente, es decir, la masa de la porción del terreno considerado.

Figura 2. Esponjamiento y factores de conversión

La excavación de un material va a provocar un aumento de volumen, y, por tanto, una disminución de su densidad aparente, que llamaremos densidad del material suelto dL. Esta circunstancia debe ser considerada en los cálculos de producción tanto de excavación como de transporte. Se denomina factor de esponjamiento FW —también llamado “Factor Volumétrico de Conversión FVC”, al cociente entre los volúmenes aparentes en banco y del material suelto. Dicho factor, es evidentemente, menor a la unidad. También se denomina en la bibliografía Factor de Conversión de Esponjamiento (F.C.E.).

donde,

FW = Factor de esponjamiento.

VB = Volumen que ocupa el material en banco.

VL = Volumen que ocupa el material suelto.

Si os interesa, podéis consultar una entrada previa donde os dejé un Laboratorio virtual para el cálculo del peso específico de un suelo.

Otra relación sería el porcentaje de esponjamiento SW, que expresaría el tanto por ciento entre el incremento de volumen y el del material en banco. Ambos conceptos se podrían referir a las densidades aparentes en banco y suelta, siempre que no hubiese variación de humedad en la manipulación, al no variar la masa total.

donde,

SW = Porcentaje de esponjamiento.

VB = Volumen que ocupa el material en banco.

VL = Volumen que ocupa el material suelto.

 

De la Tabla 1 pueden tomarse valores característicos de peso específico en banco y factor volumétrico de conversión, aconsejándose la determinación real para casos donde precisemos afinar mediciones o productividades.

MATERIAL   gB (t/m3) FW
CALIZA 2,61 0,59
ARCILLA estado natural 2,02 0,83
seca 1,84 0,81
húmeda 2,08 0,80
ARCILLA Y GRAVA seca 1,66 0,86
húmeda 1,84 0,84
ROCA ALTERADA 75% Roca-25% Tierra 2,79 0,70
50% Roca-50% Tierra 2,28 0,75
25% Roca-75% Tierra 1,06 0,80
TIERRA seca 1,90 0,80
húmeda 2,02 0,79
barro 1,54 0,81
GRANITO FRAGMENTADO 2,73 0,61
GRAVA natural 2,17 0,89
seca de 6 a 50 mm. 1,90 0,89
húmeda de 6 a 50 mm. 2,26 0,89
ARENA Y ARCILLA 2,02 0,79
YESO FRAGMENTADO 3,17 0,57
ARENISCA 2,52 0,60
ARENA seca 1,60 0,89
húmeda 1,90 0,89
empapada 2,08 0,89
TIERRA Y GRAVA seca 1,93 0,89
húmeda 2,23 0,91
TIERRA VEGETAL 1,37 0,69

Tabla 1.- Peso específico en banco y factor de esponjamiento para distintos materiales.

La compactación consiste en someter al terreno a esfuerzos de compresión que produzcan movimientos de sus partículas, de modo que le lleven a posiciones de mayor compacidad. Ello, evidentemente, comporta una disminución del volumen aparente del material. Se denominará factor de compresibilidad FC a la relación entre el volumen del material compactado y en banco.

donde,

FC = Factor de compresibilidad.

VC = Volumen que ocupa el material compactado.

VB = Volumen que ocupa el material en banco.

Otro tipo de definiciones usadas para expresar la relación entre los componentes de un terreno, serían las siguientes:

  • Contenido de humedad: relación entre la masa del agua y de los sólidos.
  • Grado de saturación, Sr: relación entre el volumen de agua y el volumen de huecos.
  • Índice de poros, e: relación entre el volumen de huecos y el volumen de sólidos.
  • Porosidad, n: volumen de huecos referida a la totalidad del volumen.

Os dejo un vídeo donde se explican estos conceptos. Espero que os sea útil.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Palas cargadoras

pala cargadoraLa norma ISO 6165:2012 define como cargadora a la máquina autopropulsada sobre ruedas o cadenas con un equipo montado en la parte frontal cuya función principal es la operación de carga (utilizando una cuchara), con la que carga o excava mediante el movimiento de la máquina hacia delante. Por tanto, aparte de la cuchara frontal, su estructura soporte y un sistema de brazos articulados capaz de cargar y excavar mediante su desplazamiento y el movimiento de sus brazos, y de elevar, transportar y descargar materiales.

Son máquinas diseñadas para la excavación, carga y pequeño transporte de material. Se denominan genéricamente palas cargadoras, aunque otros nombres podrían ser la de pala tractora o cargadora frontal. Se trata de un tractor al que se le acopla una cuchara que se llena por empuje de la máquina sobre el terreno, dotada de un dispositivo de elevación y otro de volteo para manipular las tierras. Estas máquinas tienen como funciones principales las de cargar en las unidades de transporte materiales sueltos o la alimentación de tolvas, acopiar productos, efectuar operaciones de excavación en terrenos no muy duros o compactos, elevación y manejo de cargas y acarreos a distancias pequeñas de materiales (no más de 30 o 50 m. si no se quiere bajar rápidamente su producción). Atendiendo a su sistema de desplazamiento se dividen en palas cargadoras sobre neumáticos y sobre orugas.

Como una imagen vale más que mil palabras, os dejo unos vídeos para que veáis cómo trabaja esta máquina.

https://www.youtube.com/watch?v=z002KeNgdy4

Referencias:
AENOR (2012). UNE-EN ISO 6165 “Maquinaria para movimiento de tierras. Tipos básicos. Identificación, términos y definiciones”.YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tractor sobre ruedas: el turnadozer

Figura 1. Turnadozer Caterpillar 824

El turnadozer es un tractor montado sobre neumáticos. A diferencia de los tractores montados sobre orugas, los buldóceres (bulldozers, en inglés), los turnadozers transmiten mayor presión específica sobre el terreno (0,35 MPa). Presentan una tracción de hasta 82 t, necesitan tracción a las cuatro ruedas y son más veloces que los buldóceres (hasta 60 km/h), por lo que presentarían cierta ventaja en el desplazamiento de tierras a mayores distancias (aunque entraría en competencia con las cargadoras). Sin embargo, no son aconsejables en terrenos rocosos por el desgaste y los cortes de neumáticos. Es por ello que no son muy frecuentes en las obras. En una de mis primeras obras tuve la ocasión de utilizar uno de ellos, debido a exigencias de uso del parque de maquinaria de la empresa, pero se usaba principalmente para labores auxiliares de limpieza de la zona de carga y en el mantenimiento de pistas y caminos de obra.

Un vídeo antiguo sobre esta máquina, que espero os guste.

Aquí tenéis otro vídeo ilustrativo:

En este otro podemos ver un turnadozer con múltiples ejes de ruedas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rimpull y tracción. Problema resuelto.

La velocidad máxima a la que se puede desplazar una máquina depende de la resistencia a la rodadura del suelo, de forma que no se produzca deslizamiento. Esta fuerza, a partir de la cual se produce el deslizamiento, se denomina rimpull utilizable. Se calcula multiplicando el peso que llega al eje tractor por el coeficiente de adherencia o factor de tracción que depende tanto del tipo de superficie como del tipo de rueda u oruga.

Sin embargo, el rimpull disponible, definido como la fuerza de tracción aplicada entre las llantas de las ruedas tractoras y el suelo, depende directamente de la potencia del motor y del coeficiente de rendimiento total del sistema de transmisión, e inversamente proporcional a la velocidad del vehículo. La potencia del motor se debe corregir en función de las condiciones de trabajo reales (altitud, temperatura y humedad en el ambiente). El rimpull utilizable debe ser mayor al disponible para que las ruedas no deslicen.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204.

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Os dejo a continuación un ejemplo resuelto para aclarar estos conceptos. Espero que os sea de interés.

Descargar (PDF, 97KB)

Zanjadora de brazo inclinable

Llamada en cierta bibliografía excavadora “ladder ditcher”, consiste en una serie de cangilones o cuchillas montados generalmente sobre orugas, que excavan en la dirección del eje de avance de la máquina y vierte las tierras, sobre una cinta transportadora dispuesta en dirección transversal a la excavadora. La tierra excavada se deposita en un cordón lateral o se carga en las unidades de transporte.

Sus elementos esenciales son:

  • El brazo de cangilones, móvil mediante cilindros hidráulicos hasta una inclinación máxima de 55º respecto a la horizontal, que tienen montados cangilones con cuchillas para terrenos no rocosos, dientes cónicos o picas en terrenos rocosos y dientes cuadrados en terrenos congelados.
  • Nivelador de fondo, con el que se consiguen zanjas de fondo limpio, llevando una zapata en su estructura que impide a la máquina excavar a más profundidad de la requerida.
  • Transportador de descarga, situado transversalmente al eje longitudinal, y consiste en una cinta transportadora con altura de descarga regulable.

La máquina empieza excavando sin moverse, descendiendo el brazo de cangilones hasta la profundidad deseada, posteriormente avanza y mantiene una velocidad compatible con la naturaleza del terreno, al igual que la velocidad de los cangilones.

Zanjadora utilizada en la segunda fase del postrasvase den Villena. Fuente: http://www.diarioinformacion.com/elda/2010/03/22/monstruo-terreno/991803.html

De las zanjadoras, el de tipo de brazo inclinable es el que permite cavar la trinchera más ancha. Con cangilones normales, esta anchura llega hasta 0,90 m y con los dientes desbordantes, alcanza 1,45 m. El radio de las curvas que pueden abordarse sin levantar el brazo es de unos 25 a 50 m. En zanjas estrechas no se usa esta máquina.

Una de las zanjadoras más grandes del mundo se ha empleado en Villena para acelerar las obras del post-trasvase Júcar-Vinalopó. Es una máquina de 180 t, con una longitud de 4 m de ancho y 9 m de largo. Con esta máquina se pueden abrir de 100 a 120 m de zanja al día.

Os dejo a continuación varios vídeos que explican el funcionamiento de esta máquina.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Miniexcavadoras

Máquina autopropulsada sobre ruedas o sobre cadenas, metálicas o de goma. Presenta una superestructura capaz de efectuar una rotación al menos de 360º, que excava o carga, eleva, gira y descarga material por la acción de una cuchara fijada a un conjunto de pluma y balancín, sin que la estructura portante se desplace y con un peso no superior a los 6.000 kg.

Se emplean en obras de servicios públicos urbanos, demoliciones, acondicionamiento de calles, etc. En la industria se usan en trabajos de desescombro, limpieza, jardinería, etc. Su característica fundamental es el servicio de apoyo que realizan.

Os dejo varios vídeos explicativos sobre esta máquina que espero os gusten.

Algunas de estas máquinas son extremadamente pequeñas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Curva de llenado de una mototraílla empujada por buldócer

1ScraperDozer

Una mototraílla convencional, empujada por un buldócer, tiene una curva de llenado, función del tiempo de carga “t”: C=C(t). Sabiendo que el ciclo completo de las mototraíllas vale (a+t) y el de las empujadoras (b+d·t), siendo a, b y d constantes, calcular el tiempo de carga óptimo.

Resolución:

Como el material encuentra cada vez mayor resistencia a entrar en la caja de la traílla conforme esta se va llenando, la curva de carga es creciente, con un valor asintótico superior, que es la mayor capacidad de la traílla, a partir de la cual la misma cantidad de material que entra por abajo es derramado por su parte superior.

La curva C=C(t) tendría una forma como la que sigue:

Figura 1

El tiempo de carga óptimo es el que minimiza el coste unitario de producción U(t):

Figura 2

  • El coste horario del equipo, si este está formado por “n” traíllas, a un costo horario de “T” ptas/h, y “m” topadoras, a un coste horario de “E” euros/h, será:

Coste horario del equipo=n·T+m·E euros/h

 

  • La productividad horaria del equipo va a depender de si faltan o sobran traíllas.

* Si faltan traíllas, serán estas las que condicionen la producción total del equipo, que será:

Figura 8

En este caso

Figura 3

para encontrar el mínimo, derivamos e igualamos a cero:

Figura 10

Por consiguiente, para el cálculo del tiempo de carga óptimo basta con buscar la tangente de la curva de carga desde un punto situado a una distancia “a” del origen. “a” es el período del ciclo de la mototraílla que no se emplea en la carga.

Figura 5

* Si sobran traíllas, las topadoras condicionarán la producción total del equipo, que será:

Figura 9

En este caso

Figura 6

para encontrar el mínimo, derivamos e igualamos a cero:

Figura 7

Por tanto, de forma análoga al caso anterior, para el cálculo del tiempo de carga óptimo basta con buscar la tangente de la curva de carga desde un punto situado a una distancia “b/d” del origen.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág.  ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

El movimiento de tierras con las nuevas tecnologías

La maquinaria de movimiento de tierras ha cambiado rápidamente con las innovaciones tecnológicas. Se ha evolucionado hacia la especialización y el gigantismo. Unas máquinas derivan hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad. Este vídeo de Discovery Max muestra dicha tendencia al gigantismo en la maquinaria de ingeniería civil y minera. Espero que os guste.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

¿Qué es una retroaraña?

Retroaraña, vía: http://losrecursosdelbosque.blogspot.com

Una retroaraña (spider excavator o walking excavator) es una  retroexcavadora que presenta garras en vez de ruedas u orugas, lo cual hace que sea un máquina especialmente adaptada a orografías pronunciadas.  La araña (como se la conoce para abreviar) tiene en la parte de delante unas garras telescópicas y articuladas, y en la parte de detrás unas ruedas con unas cadenas. Cuando la máquina se traslada por terrenos llanos los hace con las cuatro ruedas, pero si éste se complica, se anulan las delanteras y se desplaza apoyándose en los brazos telescópicos en en el brazo. El brazo de grúa de una retroaraña presenta diferencias con respecto al de una retroexcavadora, pues es articulado además de telescópico. Se trata, por tanto, de una máquina muy versátil en trabajos de orografía complicada como es el caso de la repoblación de montes.

 

http://ingenieriaycomputacion.blogspot.com

Os dejo a continuación una entrevista realizada por RTV Tarifa realizada con motivo de la repoblación del monte público en dicho municipio gaditano:

También os dejo una serie de vídeos sobre el trabajo de la máquina, alguno de ellos espectaculares. Espero que os gusten.

Referencia:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.