Clasificación de los sistemas de encofrado

Figura 1. Encofrados verticales. By Farina Destil (Farina Destil) [Public domain], via Wikimedia Commons

Se pueden clasificar los encofrados de muy distintas formas: atendiendo al material con el que están elaborados, al sistema de transmisión de cargas, al sistema de ejecución, etc. Sin embargo, se suelen agrupar en función de la posición del elemento que se va a encofrar: sistemas horizontales y sistemas verticales. Ejemplo del primer tipo son los forjados utilizados en edificación; en cuanto a los segundos, podrían ser aquellos utilizados en pilares o muros.

En cuanto a los materiales, si bien hasta hace pocas fechas era habitual el uso de la madera, nuevos materiales como el aluminio (con este material hay que tener precauciones, ver artículo 68.3 de la EHE-08) o el plástico han permitido estandarizar e industrializar más los procedimientos constructivos. Esta industrialización ha permitido reducir los tiempos de montaje y desmontaje, y con ello el periodo de ejecución de estas tareas. En un post anterior ya se realizó una introducción sobre lo que son y para qué sirven los encofrados.

Por tanto, como podemos ver, existen una serie de factores a tener en cuenta a la hora de elegir el mejor encofrado. Al aspecto económico habría que añadir otros que influyen directamente en él como es el tiempo de desencofrado, el coste de los elementos auxiliares, el coste de la mano de obra necesaria, la colocación y desencofrado, los equipos necesarios, el número de usos que se le de a los materiales y el coste del acabado de las superficies de hormigón.

A continuación he elaborado un mapa conceptual (Figura 2) para clarificar la clasificación de los sistemas de encofrado. Como podéis ver, además de la posición del elemento a encofrar, se ha considerado la transmisión de cargas y la ejecución del elemento para establecer un esquema que simplifique la comprensión de los sistemas.

Figura 2. Mapa conceptual de los sistemas de encofrado. Elaboración: V. Yepes

Los encofrados horizontales, normalmente empleados en forjados de edificación o losas de puentes, presentan tres grupos de elementos constituyentes (Figura 3):

  • Una superficie encofrante, que da la textura y que permite la transmisión de las cargas
  • Una estructura horizontal formada por vigas, sopandas o correas, que traslada las cargas de la superficie encofrante a la estructura vertical
  • Una estructura vertical, formada por puntales, que transmite las cargas a los forjados inferiores o al terreno.
Figura 3. Encofrado de forjado. Fuente: https://www.grupomaq.es/encofrado-de-forjado/

Los sistemas de encofrado vertical, típico en la ejecución de pilares y muros. Según el modo de transmisión de los esfuerzos, se clasifican a su vez en encofrados “a una cara” y encofrados “a dos caras”. Los encofrados a una cara son aquellos en los que, o bien las dos caras encofrantes se unen por tierantes, o no existe una de las caras. En este caso las presiones del hormigón fresco se absorben por estructuras externas al encofrado. En el caso del encofrado a dos caras, las presiones del hormigón se absorben por tirantes internos que atan las dos caras encofrantes. Presentan agrupaciones de elementos (Figura 4):

  • El sistema encofrante, que da textura y soporta la presión del hormigón fresco
  • La estructura de soporte, constituida por un marco exterior y unas costillas interiores de refuerzo

 

Figura 4. Encofrado para muros con vigas. Fuente: https://www.peri.es/productos/encofrados/encofrados-para-muros/vario-gt-24-girder-wall-formwork.html#&gid=1&pid=1

En el caso de encofrados verticales de grandes alturas, se pueden utilizar los encofrados trepantes o autotrepantes y los deslizantes. De ellos ya se ha hablado en otros posts anteriores.

Por último, os dejo un pequeño vídeo explicativo donde se resumen los aspectos más significativos de las tipologías de los encofrados.

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clases de diseño de cimbras según la norma UNE-EN 12812

By СТАЛФОРМ Инжиниринг [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons

La norma UNE-EN 12812:2008 define los requisitos de comportamiento y diseño general de las cimbras.

Esta norma no solo recoge las acciones típicas a considerar en los cálculos, sino que además cataloga y diferencia dos tipos de cimbra, las denominadas como clase A y clase B.

 

 

 

 

 

Clase de diseño A: es aquella cimbra cuya estabilidad está avalada por la experiencia y buenas prácticas ya establecidas y que se puede considerar que satisface los requisitos de diseño. Son cimbras de utilización estándar y con limitaciones de altura y cargas. Las más habituales son puntales para forjados de edificación y las torres cuajadas en puentes. El proyecto de la cimbra debe incluir una copia de los ensayos y cálculos realizados por el proyectista del material estándar con las limitaciones de uso y montaje que deben respetarse. Esta documentación deberá estar firmada por el suministrador del material y por el laboratorio que haya realizado el ensayo. Estos montajes requieren un análisis simplificado basado en los materiales de los elementos que conforman la cimbra (puntales, bases, cabezales de cimbra y arriostramientos). Su utilización se basa normalmente en la aplicación de tablas de uso y manuales de uso generales y no suelen requerir de cálculos ni ensayos específicos. Habitualmente sólo entran dentro de esta clasificación los apeos con puntal. Según la norma, la clase A se puede adoptar solo cuando:

  1. las losas tengan un área de sección transversal inferior a 0,3 m2 por metro de anchura de losa
  2. las vigas tengan un área de sección transversal inferior a 0,5 m2
  3. la luz libre de las vigas y las losas no supere los 6,0 m
  4. la altura de la estructura permanente en la cara inferior no supere los 3,5 m

Clase de diseño B: la estabilidad y el diseño se deben estudiar de acuerdo con los Eurocódigos (EN 1990, EN 1991 hasta EN 1999) y con los apartados de la UNE-EN 12812, debido a que se debe realizar un diseño estructural completo.  Por tanto, se deben comprobar los estados límites últimos y de servicio, así como las uniones y detalles. Además, se deben incluir planos que determinen la cimbra en planta para poder realizar el replanteo, los alzados y las secciones, así como los detalles importantes. Dentro de esta clase se incluyen todas las cimbras realizadas con material a medida y todas aquellas de material estándar pero con usos que se salen de sus condiciones de utilización. La clase B2 permite un cálculo más simplificado que la clase B1 para determinar la distribución de la carga, basado en las áreas de influencia que recoge cada vertical o montante de la cimbra. Este cálculo simplificado alcanza el mismo nivel de seguridad. En la clase B1 se supone que el montaje se lleva a cabo con un nivel de destreza apropiado para la construcción permanente (ver normas EN 1090-2 y EN 1090-3 para estructuras metálicas).

Fuera de estas dos clases de diseño, mencionaremos las cimbras especiales, destinadas a la construcción de grandes estructuras (cimbras autolanzables, lanzadores de vigas y dovelas o carros de voladizos sucesivos). se caracterizan por ser cimbras-máquina, es decir, con movimiento, por lo que se precisa de un cálculo muy detallado en todas las posiciones de trabajo.

By STALFORM Engineering [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons
Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

 

Componentes de una cimbra montada con elementos prefabricados

Figura 1. https://pixabay.com/es/sitio-las-obras-de-construcci%C3%B3n-592459/
CC0 Creative Commons

Las cimbras, según define la Norma Técnica de Prevención NTP-1069, son estructuras provisionales de apuntalamiento en altura, que sirven para la sustentación de las distintas plataformas, mesas o planchas de trabajo que conforman el encofrado, cumplen, según los casos, funciones de servicio, carga y protección. Las cimbras también se pueden utilizar como apeo para cualquier carga, por ejemplo: estructuras como apeo en fase de montaje, demoliciones, refuerzo de estructuras existentes frente cargas puntuales, etc.

Las torres de cimbra de componentes prefabricados son los más empleados, clasificándose según su método de rigidización, pues se puede triangular completamente en todos los planos verticales (Figura 1) o no.

Las cimbras permiten su funcionamiento como estructuras capaces de soportar cargas de diferente naturaleza. Los principales componentes y elementos principales son los siguientes:

  • Base regulable. Es una placa base metálica, dispuesta en la parte inferior de la torre de cimbra, que permite el apoyo sobre el terreno o cimentación durante el montaje y que, gracias a un husillo, se regula en altura para absorber de las irregularidades en la superficie de apoyo de la torre.
  • Cabezal en U. Se trata de una pieza metálica en U, situada en la parte superior de la torre, encima de los últimos montantes verticales, que permite el apoyo de las vigas primarias que soportan el encofrado.
  • Husillo. Consiste en un dispositivo metálico roscado, utilizado como componente principal en las bases regulables y en los cabezales en U. Es capaz de regular la altura de la cimbra y de liberarla de carga, para su descimbrado, a través de su descenso.
  • Montante. Es un elemento metálico vertical de la cimbra que transmite las cargas soportadas en la parte superior de la cimbra hasta el terreno o cimentación sobre la que se sustenta la torre de cimbra. Su montaje, arriostrado con el resto de los montantes verticales de la torre, configura lo que se denomina “módulos de la cimbra”.
  • Travesaño. Se trata de un elemento metálico horizontal de la cimbra, que conecta horizontalmente dos montantes verticales adyacentes, aumentado la rigidez y la resistencia vertical y estabilidad de la torre de cimbra.
  • Diagonal. Es un elemento metálico dispuesto en la torre de cimbra, que permite conectar de manera diagonal dos montantes verticales adyacentes, aumentando la rigidez y proporcionando una mayor resistencia vertical y lateral de esta estructura auxiliar de carácter temporal.Tanto los travesaños horizontales como las diagonales, son rigidizadores que ajustan, aseguran y estabilizan la torre de cimbra desde su arranque. El número de arriostramientos varía en función de la altura total de la torre, gracias a lo cual se evita el vuelco o desplazamiento de la torre de cimbra ante posibles esfuerzos horizontales, garantizando la estabilidad estructural y la capacidad de carga de la torre de cimbra.
  • Abrazadera/acoplamiento: Se trata de un dispositivo utilizado para conectar dos tubos diferentes. Existen dos tipos principales: acoplamiento de cuña (donde la fuerza de sujeción se obtiene al ajustar una mordaza sobre el tubo mediante el golpeo de una cuña) y el acoplamiento roscado (donde la fuerza de sujeción se obtiene al ajustar una mordaza alrededor del tubo por medio de una tuerca y un perno).
  • Contrapeso. Consiste en material sólido opcional que puede disponer la estructura que conforma la cimbra para proporcionar una mayor estabilidad frente al vuelco por la acción de su peso muerto.
  • Cimiento. Subestructura opcional, en terrenos de poca capacidad portante y de resistencia a compresión, que tiene el objetivo de transmitir la carga de las torres de cimbra a éste en lugar de realizar un apoyo directo sobre el terreno. Como cimentación de las torres de carga suelen disponerse zapatas formadas por durmientes de madera o de hormigón.

 

 

En la Figura 2 siguiente se puede ver un esquema simplificado de los componentes de una cimbra, en este caso, de una cimbra de gran carga MK-360 de la empresa ULMA.

Figura 2. https://www.ulmaconstruction.com/es/encofrados/puntales-cimbras/cimbras-de-gran-carga/cimbra-gran-carga-mk

 

A continuación os dejo una animación del proceso de montaje Cimbra PAL Mecanotubo para aclarar las ideas.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

Encofrados deslizantes

Figura 1. Encofrado deslizante

Los encofrados deslizantes consisten en un molde de poca altura, capaz de configurar una sección de hormigón vertida en él de forma constante y a la misma velocidad que se eleva dicho molde. Este se cuelga por medio de unos marcos o caballetes de madera o metal a una serie de dispositivos de elevación soportados por barras metálicas o por otros elementos que se apoyan sobre los cimientos o sobre el hormigón endurecido. El hormigón se vierte en el encofrado, y a medida que se endurece se levanta progresivamente, el encofrado, que es arrastrado por los dispositivos de elevación de los que está colgado.

Los encofrados deslizantes se utilizan preferentemente en obras de gran altura, sección constante o que varía ligeramente con la altura y espesores también ligeramente variables. Hoy día es posible realizar variaciones importantes en el espesor de la sección, aunque ello supone cierta dificultad añadida. En silos y estructuras que así lo permitan, se suele hormigonar con grúa torre. Su utilización se ha extendido hasta complicadas estructuras inclinadas y combinables con elementos prefabricados en estructuras compuestas.

El vertido del hormigón, el montaje de las armaduras, de los marcos de puertas y ventanas, de los moldes para crear aberturas, etc., se hace conforme se eleva el encofrado, a partir de una plataforma de trabajo que se encuentra al nivel de su borde superior. De esta plataforma se cuelga, 3 o 4 m por debajo, una o dos plataformas inferiores, a partir de las cuales se vigila la calidad del vertido del hormigón. El encofrado deslizante se eleva continuamente a una velocidad de 5 a 30 cm/hora, según el endurecimiento del hormigón, para realizar una cadena tecnológica.

El sistema es rápido, al estar fuertemente industrializado, pero tiene un fuerte coste de primera instalación, por lo que solo es rentable con alturas muy importantes (en pilas se prefieren alturas por encima de 70 m) o con alturas menores si el número de piezas a deslizar en la misma obra es muy significativo. El encofrado se puede retirar a las 4-12 horas después de puesto en obra el hormigón. El trabajo no se debe interrumpir -aunque son posibles adoptando las medidas apropiadas-, por lo que se necesitan 2 o 3 turnos. Ello significa que la construcción se puede elevar entre 1,5 y 6 m al día.

Por tanto, cuando se usa un encofrado deslizante, los procesos de armado, encofrado, hormigonado y desencofrado son realizados de forma simultánea y continua. La forma de elevar el molde, que al principio fue manual, ahora se realiza de forma mecánica mediante sistemas hidráulicos, con un ascenso automático y a la velocidad deseada. Se pueden distinguir fundamentalmente dos tipos de encofrados deslizantes, los empleados para obras en vertical (silos, pozos, chimeneas, pilas, etc.) y los destinados a obras en horizontal (canales, etc.).

Este sistema se empezó a utilizar en Estados Unidos en 1903 y en 1924 en Europa, en la construcción de silos. Sin embargo, pronto se empezaron a construir otro tipo de obras como pilas de puente, depósitos elevados de agua o faros. En España las primeras realizaciones son de finales de los años cuarenta del siglo pasado, también en silos de grano.

En España destaca la realización con este método de la chimenea de la central térmica de Puentes de García Rodríguez (propiedad de ENDESA) que con una altura de de 356 m y un diámetro de 36 m en la base (espesor de 1,25 m) y de 18 m en coronación (espesor de 0,25 m). Esta chimenea (Endesa Termic), que comenzó a construirse en 1972 y cuyo funcionamiento empezó en 1976, fue realizada por Entrecanales y Tavora S.A., fue en su momento la más alta de Europa y la tercera del mundo (ver nota a pie de página).

Figura 2. Endesa Termic, chimenea de la central térmica de Puentes de García Rodríguez. Wikipedia

Ventajas del sistema:

a) Se realizan de forma simultánea varias operaciones, que en otros métodos deben hacerse de forma sucesiva, lo que supone una reducción del plazo de ejecución

b) Se suprimen tiempos muertos y cuellos de botella en las operaciones

c) Se consigue una gran velocidad de ejecución (hasta 6 m/día), con una muy buena calidad de obra

d) Se logra un gran número de reutilizaciones de los paneles

e) Es posible la construcción de obras de gran altura sin andamiajes, aplicando sistemas de elevación para personal y materiales

f) Economías significativas de mano de obra, al mecanizarse gran parte de las operaciones

g) Continuidad en la ejecución, incluso en tiempo frío, tomando las medidas que garanticen el endurecimiento del hormigón

h) Muy buen acabado de obra, debido al monolitismo, sin juntas frías,  y a la uniformidad

encofrados deslizantes esquema 2
Figura 3.

Condiciones de aplicación:

En contrapartida a las ventajas anteriores, el sistema exige:

a) Estudio y redacción de todo un proyecto de encofrado mecanizado por técnicos competentes

b) La ejecución de las obras debería ser dirigida por técnicos que hayan aplicado ya el método

c) Organización perfecta de la ejecución, con personal muy especializado, que asegure el trabajo las 24 horas

d) Fabricación y montaje de encofrados con gran exactitud, con tolerancias muy estrictas

encofrado deslizante esquema
Figura 4.

El principio de funcionamiento:

La unidad fundamental del equipo son los gatos de trepa. Son huecos y a través de ellos pasa un tubo de acero que es la barra de trepa, que se apoya en la cimentación. El gato dispone de dos juegos de cuñas dentadas que se clavan en la barra alternativamente y hacen que el gato ascienda a lo largo de la misma. Del gato cuelgan dos vigas de acero por medio de una transversal que forman el normalmente denominado “yugo” o “caballete”. De los yugos se suspende el encofrado y el resto de estructuras, andamios y plataformas necesarias para las tareas de ferralla, hormigonado, etc. y los mecanismos de reducción de diámetro y espesor. Dependiendo del tipo de estructura que se trate, los procedimientos de hormigonado varían. Lo usual en estructuras muy altas como chimeneas, torres de TV, etc. es colocar un ascensor en el centro suspendido de unas estructuras radiales y guiado mediante unos cables tensados. En él sube una tolva de hormigón y , retirada esta, sirve también para el ascenso de ferralla y del personal. La vibración es normalmente con aguja.

Figura 5. Imagen del yugo en el encofrado deslizante

 Elementos de un sistema de encofrado deslizante vertical:

a) Paneles: son los tableros del encofrado propiamente dicho

b) Caballetes: para arrastrar los paneles, a los que se anclan

c) Barras de apoyo: sobre las que se transmite el esfuerzo de elevación

d) Dispositivo de elevación: normalmente gatos o crics, actúan sobre los caballetes para elevar los paneles apoyándose en las barras

e) Plataformas de trabajo: de acceso a los diversos puntos de trabajo y control

f) Redes de las diferentes instalaciones: necesarias para el funcionamiento del encofrado

Encofrado deslizante
Figura 6. Sección y elementos de un encofrado deslizante

A continuación dejo algunos vídeos donde se puede comprobar el funcionamiento del sistema.

Un documental extenso sobre este sistema de enconfrados deslizantes lo podéis ver aquí.

Referencias:

DINESCU, T.; SANDUR, A.; RADULESCU, C. (1973). Los encofrados deslizantes. 1ª edición. Espasa-Calpe, S.A. Pozuelo de Alarcón, 496 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

_________________________________________________________________

Nota: Se utilizó en la construcción de la chimenea una torre colgada, de 120 t, de los gatos de trepa de 40 m de altura de la que se atirantaban los soportes. El problema fue desmontar esta torre al finalizar la operación. Para ello se utilizó, según me comenta Juan Manuel Lázaro (responsable del Departamento de Obras Singulares de Entrecanales y Tavora en aquel momento) un puente Bailey de 18 m colgado por medio de barras Dywidag de dos pórticos apoyados sobre el fuste de hormigón, sobre el cual se apoyó la torre. Esta maniobra fue idea de Javier Urquijo Grijalba.

Grúa de puerto giratoria “pico de pato”

pico de patoEstas grúas de puerto mantienen la cota de la carga por medio de un sistema de articulaciones que hace que la pluma de la grúa funcione como un mecanismo. El desplazamiento del pórtico y el giro de la superestructura es similar a las giratorias de cable compensado.

El  giro se consigue mediante un grupo moto-reductor fijado en el lateral del castillete y una corona dentada fija en la parte superior del pivote.  Éste dispositivo permite un giro de 360º controlado por la botonera de mando. Este mecanismo además de hacer girar la superestructura de la grúa, debe controlar el momento de vuelco debido a la excentricidad de la carga y peso propios.

Grúa giratoria sobre raíles “pico de pato”
Grúa giratoria sobre raíles “pico de pato”

El mecanismo que mantiene la cota de la carga es automático, de forma que no es necesario actuar sobre el cable de elevación. El movimiento de cambio de alcance, al igual que el resto de movimientos que caracterizan este modelo de grúa, se realiza mediante manipuladores progresivos y electroválvulas proporcionales dotando a la grúa de movimientos con velocidad variable y controlada. La cabina de control se sitúa en la parte frontal de la superestructura.

Referencia:

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Maquinaria auxiliar y equipos de elevación. Editorial de la Universitat Politècnica de València. Ref. 814.

La grúa motorizada más grande del mundo

MegagruaLa “Liebherr LTM 11200-9.1”, es la grúa motorizada más grande del mundo, fabricada. Este tipo de grúas se usan en la construcción, generalmente en grandes obras civiles, como la construcción de viaductos, en la reparación de un rascacielos o en el mantenimiento de aerogeneradores.  Hay varios tipos de grúa móvil, desde la T3 de sólo 55 m de altura a la T7, que alcanza los 100 m de altura y puede llegar con extensiones hasta los 130 m. Pero con un brazo accesorio (YVEN2) para la T3 que sube su altura hasta los 196 m. El contrapeso que lleva la base móvil en estos casos es de  hasta 200 t, además de cuatro brazos estabilizadores hidráulicos de 14 m de longitud. Esta base móvil puede cargar por sí sola los brazos extensibles o se pueden llevar en camiones de transporte especial. La base móvil tiene 9 ejes, todos ellos directrices y dotados de una suspensión neumática de alta resistencia. A continuación os voy a dejar un vídeo de Megamáquinas donde podemos apreciar la magnitud de las cifras que hemos comentado. Espero que os guste.

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Grúa torre trepadora

Las nuevas tecnologías han servido para facilitar la labor docente en la asignatura de “Procedimientos de construcción“. Aún me acuerdo cuando en los años 80 nuestro profesor Hermelando Corbí nos enseñaba catálogos de máquinas y con un proyector de opacos intentaba explicarnos el funcionamiento de algún medio auxiliar. Tarea algo complicada cuando de lo que se trata es explicar la obra en las cuatro paredes del aula. El Power point, los vídeos o las animaciones en 3D han provocado tirar a la basura kilos de transparencias que, hasta hace apenas 10 años, utilizábamos como herramienta habitual en la exposición de nuestras clases.

Continue reading “Grúa torre trepadora”