UPV



Resultados de la búsqueda By Etiquetas: luciernagas


Algoritmo híbrido de enjambre de luciérnagas y aceptación por umbrales para el diseño de vigas

puente CV-13 construcciónResumen—Este estudio convierte el diseño estructural en una optimización de variables discretas. Se propone un algoritmo híbrido de enjambre de luciérnagas para buscar soluciones con menores emisiones totales y anuales. El algoritmo combina la búsqueda colectiva de la optimización de enjambre luciérnagas “glowworm swarm optimization“(GSO) y la capacidad de búsqueda local del umbral de aceptación “threshold accepting” (TA). La estructura propuesta es una viga de hormigón en doble T biapoyada definida por 20 variables. Se estudia la resistencia del hormigón desde 30MPa hasta 100MPa. Esta comunicación propone un método para calibrar los parámetros del algoritmo con independencia de la función objetivo y del tamaño del enjambre. Los resultados muestran que TAGSO consigue diseños de vigas que emiten un 25% menos de CO2. La optimización de las emisiones anuales reduce la cantidad de CO2 al año en un 61% con un incremento total de las emisiones de CO2 del 9%.

Palabras clave-– Enjambre de luciérnagas, algoritmo híbrido, hormigón de alta resistencia, variables discretas.

Referencia: GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2015). Algoritmo híbrido de enjambre de luciérnagas y aceptación por umbrales para diseño de vigas. X Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados – MAEB 2015, 4-6 de febrero, Mérida, pp. 699-705. ISBN: 978-84-697-2150-6.

14 febrero, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

La UPV desarrolla un método que reduce costes y emisiones de CO2 a partir del comportamiento de las luciérnagas

NOTICIA UPV: http://www.upv.es/noticias-upv/noticia-7028-diseno-de-puent-es.html

Víctor Yepes, José V. Martí y Tatiana García, investigadores del Instituto de Ciencia y Tecnología del Hormigón de la Universitat Politècnica de València (ICITECH-UPV), han desarrollado una metodología que permite minimizar las emisiones de dióxido de carbono (CO2) y los costes de los puentes de carretera de vigas de hormigón – en concreto, los de vigas de hormigón pretensado prefabricadas con sección transversal en doble U – a partir de la simulación con ordenador, a la hora del diseño de la infraestructura, del comportamiento social de las luciérnagas

Las luciérnagas se comportan de forma inteligente como colectivo, y basan su comportamiento social en la luminosidad que emiten (luciferina), generando patrones válidos cuando se trasladan al diseño de puentes de carretera de vigas de hormigón.

“Su característica más distintiva es el cortejo nocturno”, explica Víctor Yepes. “Los machos patrullan en busca de pareja con un vuelo característico, mientras emiten secuencias de destellos de luz propios de cada especie a las que las hembras de la misma pueden responder con destellos específicos, dando lugar al apareamiento”.

“Cada luciérnaga selecciona”, prosigue Yepes, “utilizando un mecanismo probabilístico, un vecino que tiene un valor más alto de luciferina que el suyo propio, y se mueve hacia él. Trasladando este comportamiento al diseño de los puentes, se han conseguido ahorros significativos con respecto al diseño de puentes reales”.

Reducción muy significativa también de las emisiones de CO2

Además, los resultados indican que, de media, la reducción de cada euro en coste permite ahorrar hasta 1,75 kg en emisiones de CO2, un dato de gran importancia cara a la reducción de gases de efecto invernadero, responsables del calentamiento global del planeta.

Metodología desarrollada a partir de un algoritmo híbrido de optimización y el recocido simulado

En el desarrollo de la nueva metodología, los investigadores han utilizado un algoritmo híbrido de optimización por enjambre de luciérnagas (glow worm swarm optimization, GSO) y el recocido simulado (simulated anneling, SA), denominado SAGSO.

“En este algoritmo”, comenta Yepes, “la estructura del puente se define a partir de 40 variables, que incluyen los tipos de materiales y las armaduras de la viga y la losa. El algoritmo considera cada puente como una luciérnaga, de forma que un puente de menor coste o emisiones presenta un mayor valor de luciferina, es decir, resulta más prometedor en la búsqueda de mejores soluciones. Este principio permite optimizar al máximo su diseño”

Eficacia probada en la simulación de diseño de un puente en la autovía del Mediterráneo

Para comprobar la eficacia de esta nueva metodología, los investigadores del ICITECH-UPV la aplicaron a la simulación de diseño de un puente real, el viaducto 1 del tramo Muro de Alcoy-Puerto de Albaida del proyecto de construcción de la autovía del Mediterráneo.

“Aplicando nuestra metodología, el coste total del puente optimizado habría sido un 50% más barato, sin merma de calidad o seguridad”; concluye Yepes. Este trabajo se enmarca dentro del proyecto HORSOST, financiado por el Ministerio de Economía y Competitividad.

Más información

Os dejo la entrevista que nos hicieron al respecto en Radio Nacional de España Comunidad Valenciana.

Agradecimientos: Los autores agradecen el aporte financiero realizado para este trabajo por parte del Ministerio de Ciencia e Innovación (Proyecto de Investigación BIA2011-23602).

24 diciembre, 2014
 
|   Etiquetas: ,  ,  ,  ,  |  

Optimización del coste y las emisiones de CO2 de puentes de vigas artesa prefabricadas

VigasArtesas_09

En este trabajo se describe una metodología para minimizar las emisiones de CO2 y los costes de puentes de carretera de vigas de hormigón pretensado prefabricadas con sección transversal en doble U. Para ello se ha utilizado un algoritmo híbrido de optimización por enjambre de luciérnagas (glowworm swarm optimization, GSO) y el recocido simulado (simulated anneling, SA), que se hemos denominado SAGSO. La estructura se define por 40 variables, que determina la geometría, los tipos de materiales y las armaduras de la viga y de la losa. Se utiliza hormigón de alta resistencia autocompactante en la fabricación de las vigas. Los resultados suponen para los ingenieros proyectistas una guía útil para el predimensionamiento de puentes prefabricados de este tipo. Además, los resultados indican que, de media, la reducción de 1 euro en coste permite ahorrar hasta 1,75 Kg en emisiones de CO2. Además, el estudio paramétrico realizado muestra que las soluciones de menor coste presentan un resultado medioambiental satisfactorio, que difiere en muy poco respecto a las soluciones que provocan menores emisiones.

Fig 1

Resultados interesantes:

  • El coste C, en euros, y las emisiones de CO2, en kg varían de forma parabólica con la luz (L) del vano, en metros:

C=48.088L2+613.99L+31139

kgCO2=63.418L2+2392.3L+13328

  • Si se minimiza el coste, también se reducen las emisiones de CO2, de forma que el ahorro en 1 euro equivale a ahorrar 1,75 kg de CO2.
  • La esbeltez de los puentes de mínimo coste (L/18.08) y de mínimas emisiones (L/17,57) siempre son inferiores a L/17.
  • El espaciamiento entre las vigas se sitúa en torno a 5,85 m, oscilando entre 5,65 y 5,95 m.
  • Las estructuras de coste mínimo precisan 42,35  kg/m2 de armadura pasiva, mientras que si se optimizan las emisiones, se necesitarían 37,04  kg/m2.
  • Sorprende observar que, aunque parece que el hormigón de alta resistencia sería el adecuado para el prefabricado de las vigas, las estructuras óptimas se alejan de este supuesto. De hecho el hormigón para el coste mínimo en las vigas prefabricadas oscila entre 40 y 50 MPa, alejado de los 100 MPa que permitía la optimización.
  • Por último, un análisis de sensibilidad de costes en los resultados optimizados indica que un aumento del 20% en los costes del acero haría que el coste total de la estructura aumentara un 10,27%, disminuyendo el volumen de acero empleado. Sin embargo, si sube un 20% el precio del hormigón, el coste total sólo subiría un 3,41% y no variaría apenas el volumen consumido de hormigón.

 

 

Referencia:

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2014). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134.  DOI: 10.1016/j.autcon.2014.10.013 (link)

19 diciembre, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

¿Cómo nos enseñan las luciérnagas a diseñar puentes?

Lampyris noctiluca – hembra. Wikipedia

La Naturaleza es más sabia de lo que sospechamos. Quién diría a un ingeniero estructural que una simple luciérnaga sería capaz de sonrojarle e incluso enseñarle trucos para diseñar puentes, no sólo más baratos, sino también más respetuosos con el medio ambiente. Pues bien, no sólo es cierto, sino que es podemos aprender del comportamiento social de las luciérnagas para optimizar estructuras. Efectivamente, las luciérnagas se comportan como colectivo de forma inteligente. Las luciérnagas basan su comportamiento social en la luminosidad que emiten (luciferina). La característica más distintiva de las luciérnagas es su cortejo nocturno. Los machos patrullan en busca de pareja con un vuelo característico mientras emiten secuencias de destellos de luz característicos de cada especie. Las hembras de la misma especie pueden responder con destellos específicos y así el apareamiento puede ocurrir. En resolución de problemas, la luminosidad de una luciérnaga depende de la calidad de la solución encontrada y la distancia desde donde las otras compañeras están buscando soluciones. Cada luciérnaga selecciona, utilizando un mecanismo probabilístico, un vecino que tiene un valor más alto de luciferina que su propio y se mueve hacia él. De esta forma, se pueden optimizar puentes.

Dentro del proyecto de investigación HORSOST, nos acaban de aceptar un artículo científico en la revista Automation in Construction, que es una revista de primer nivel en el ámbito de la tecnología de la construcción (Factor de impacto en 2013: 1,822, posición 9 de 58 en el ámbito de Construction & Building Technology, y posición 19 de 124 en el ámbito de Civil Engineering, en función del impacto de las revistas indexadas en el JCR).

Artesa-Img6122En este trabajo se describe una metodología para minimizar las emisiones de CO2 y los costes de puentes de carretera de vigas de hormigón pretensado prefabricadas con sección transversal en doble U. Para ello se ha utilizado un algoritmo híbrido de optimización por enjambre de luciérnagas (glowworm swarm optimization, GSO) y el recocido simulado (simulated anneling, SA), que se hemos denominado SAGSO. La estructura se define por 40 variables, que determina la geometría, los tipos de materiales y las armaduras de la viga y de la losa. Se utiliza hormigón de alta resistencia autocompactante en la fabricación de las vigas. Los resultados suponen para los ingenieros proyectistas una guía útil para el predimensionamiento de puentes prefabricados de este tipo. Además, los resultados indican que, de media, la reducción de 1 euro en coste permite ahorrar hasta 1,75 Kg en emisiones de CO2. Además, el estudio paramétrico realizado muestra que las soluciones de menor coste presentan un resultado medioambiental satisfactorio, que difiere en muy poco respecto a las soluciones que provocan menores emisiones.

Resultados interesantes:

  • El coste C, en euros, y las emisiones de CO2, en kg varían de forma parabólica con la luz (L) del vano, en metros:

C=48.088L2+613.99L+31139

kgCO2=63.418L2+2392.3L+13328

  • Si se minimiza el coste, también se reducen las emisiones de CO2, de forma que el ahorro en 1 euro equivale a ahorrar 1,75 kg de CO2.
  • La esbeltez de los puentes de mínimo coste (L/18.08) y de mínimas emisiones (L/17,57) siempre son inferiores a L/17.
  • El espaciamiento entre las vigas se sitúa en torno a 5,85 m, oscilando entre 5,65 y 5,95 m.
  • Las estructuras de coste mínimo precisan 42,35  kg/m2 de armadura pasiva, mientras que si se optimizan las emisiones, se necesitarían 37,04  kg/m2.
  • Sorprende observar que, aunque parece que el hormigón de alta resistencia sería el adecuado para el prefabricado de las vigas, las estructuras óptimas se alejan de este supuesto. De hecho el hormigón para el coste mínimo en las vigas prefabricadas oscila entre 40 y 50 MPa, alejado de los 100 MPa que permitía la optimización.
  • Por último, un análisis de sensibilidad de costes en los resultados optimizados indica que un aumento del 20% en los costes del acero haría que el coste total de la estructura aumentara un 10,27%, disminuyendo el volumen de acero empleado. Sin embargo, si sube un 20% el precio del hormigón, el coste total sólo subiría un 3,41% y no variaría apenas el volumen consumido de hormigón.

 

Referencia:

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2014). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)

4 noviembre, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Universidad Politécnica de Valencia